Gul, Lejla (2022) Bioinformatic pipelines to reconstruct and analyse intercellular and hostmicrobe interactions affecting epithelial signalling pathways. Doctoral thesis, University of East Anglia.
Preview |
PDF
Download (18MB) | Preview |
Abstract
The epithelium segregates microorganisms from the immune system through tightly connected cells. The epithelial barrier maintains the integrity of the body, and the microbiome influences this through host-microbe interactions. Therefore its composition has an impact on the host's physiological processes. Disruption in the microbiome composition leads to an impaired epithelial layer. As a consequence, the cell-cell interactions between the epithelium and immune cells will be altered, contributing to inflammation. In this thesis, I examined the interconnectivity of the microbiome, epithelium and immune system in the gastrointestinal tract focusing on the oral cavity and gut in healthy and diseased conditions.
I combined multi-omics data with network biology approaches to develop computational pipelines to study host-microbe and cell-cell connections. I used network propagation algorithms to reconstruct intracellular signalling and identify downstream pathways affected by the altered microbiome composition or cell-cell connections. I studied inflammation-related conditions in the oral cavity (periodontitis) and gut (inflammatory bowel disease (IBD)) to reveal the contribution of interspecies and intercellular interactions to diseases. I inferred hostmicrobe protein-protein interaction (HM-PPI) networks between healthy gum-/periodontitisrelated bacteria communities and epithelium, and found altered HM-PPIs during inflammation. I connected the epithelial cells to dendritic cells and identified the Toll-like receptor (TLR) pathway as a potential driver of the inflammation in diseased gingiva. While in the oral cavity I focused on complex microbial communities and their impact on one cell type, I discovered the direct effect of gut commensal bacteria on several immune cells in IBD. This study observed the cell-specific effect of Bacteroides thetaiotaomicron on TLR signalling.
The pipelines I developed offer potentially interesting connections that aid detailed mechanistic insight into the relationship between the microbiome, epithelial barrier and immune system. These systems-level analysis tools facilitate the understanding of how microbial proteins may be of therapeutic value in inflammatory diseases.
Item Type: | Thesis (Doctoral) |
---|---|
Faculty \ School: | Faculty of Science > School of Biological Sciences |
Depositing User: | Nicola Veasy |
Date Deposited: | 23 Mar 2023 12:15 |
Last Modified: | 23 Mar 2023 12:15 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/91676 |
DOI: |
Downloads
Downloads per month over past year
Actions (login required)
View Item |