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Abstract 
The epithelium segregates microorganisms from the immune system through tightly connected 

cells. The epithelial barrier maintains the integrity of the body, and the microbiome influences 

this through host-microbe interactions. Therefore its composition has an impact on the host's 

physiological processes. Disruption in the microbiome composition leads to an impaired 

epithelial layer. As a consequence, the cell-cell interactions between the epithelium and 

immune cells will be altered, contributing to inflammation. In this thesis, I examined the 

interconnectivity of the microbiome, epithelium and immune system in the gastrointestinal tract 

focusing on the oral cavity and gut in healthy and diseased conditions.  

I combined multi-omics data with network biology approaches to develop computational 

pipelines to study host-microbe and cell-cell connections. I used network propagation 

algorithms to reconstruct intracellular signalling and identify downstream pathways affected by 

the altered microbiome composition or cell-cell connections. I studied inflammation-related 

conditions in the oral cavity (periodontitis) and gut (inflammatory bowel disease (IBD)) to reveal 

the contribution of interspecies and intercellular interactions to diseases. I inferred host-

microbe protein-protein interaction (HM-PPI) networks between healthy gum-/periodontitis-

related bacteria communities and epithelium, and found altered HM-PPIs during inflammation. 

I connected the epithelial cells to dendritic cells and identified the Toll-like receptor (TLR) 

pathway as a potential driver of the inflammation in diseased gingiva. While in the oral cavity I 

focused on complex microbial communities and their impact on one cell type, I discovered the 

direct effect of gut commensal bacteria on several immune cells in IBD. This study observed 

the cell-specific effect of Bacteroides thetaiotaomicron on TLR signalling. 

The pipelines I developed offer potentially interesting connections that aid detailed mechanistic 

insight into the relationship between the microbiome, epithelial barrier and immune system. 

These systems-level analysis tools facilitate the understanding of how microbial proteins may 

be of therapeutic value in inflammatory diseases.  
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Chapter 1: General introduction 

1.1 Preface 

Humans are colonised by complex microbial communities comprising viruses, archaea, 

bacteria and eukaryotes. The composition of the microbiome has an impact on the host's 

physiological processes, hence the communication between the microbe and host is crucial to 

maintaining homeostasis. Accordingly, disruption in the community composition potentially 

leads to increased inflammation and the pathogenesis of diseases, such as periodontitis in the 

oral cavity or inflammatory bowel disease (IBD) in the gut 1,2. Currently, there are correlation-

based approaches to study the interplay between host processes and the microbiome (e.g., 

blood biomarkers 3). These studies reveal significant associations between microbial taxa and 

host factors, such as the level of cytokines 3,4. The limitation is that this approach can not detect 

the effect of microbial strains on host signalling at the molecular level due to the complexity 

and cross-talk of biological processes.  

This iCASE PhD scholarship was supported by Unilever, the industrial collaborator of the 

project. Together, we aimed to provide mechanistic insights into the beneficial and harmful 

effects of the healthy and unhealthy microbiota that facilitates the product design and improves 

consumer experience, mitigates any negative effects and enhances the product use benefits 

in the marketplace. I undertook a three months internship at the company, where I further built 

my research and personal skills and competencies. I participated in meetings with my industrial 

supervisor and her team extending my knowledge about metabolic models and network 

modellings. The internship contributed to my personal qualities by working in a professional 

industrial environment and practising presentation/communication and time management 

skills. The project's output for Unilever covered a methodology development (Chapter 3) and 

a case study by analysing public data from the oral cavity (Chapter 5). 

This introductory chapter explores the background theories and literature relating to the current 

knowledge about the human microbiome and its interaction with the host. Chapter 2 and 3 

present interdisciplinary workflows developed by myself and colleagues to study intercellular 

and host-microbe interactions and their downstream effect on host cellular processes. The 

following two chapters (Chapters 4 and 5) demonstrate these workflows with case studies. 

Chapter 4 is a case study for the host-microbe interaction pipeline analysing single-cell 

transcriptomic data and proteomic profiling of bacterial extracellular vesicles. This study 
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focuses on the effect of Bacteroides thetaiotaomicron (Bt) BEVs on immune cells in the healthy 

and inflamed colon. Chapter 5 combines the developed pipelines to analyse connections 

between the gingival microbiome and epithelium and cell-cell communication between 

epithelial and immune cells in healthy and periodontal conditions. Finally, Chapter 6 discusses 

overall conclusions of the thesis and gives future directions. The general structure of the thesis 

is presented in Figure 1.1 and Table 1.1. 

 

Figure 1.1: Overall view of the PhD project. I highlighted those resources and methods that I carried 
out by myself. 
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Table 1.1: Summary of the thesis 

Chapter Type of the interaction Object Aim of the project 

Chapter 2 Intercellular interaction Myofibroblasts - regulatory T 
cells 

Rewiring of stromal and immune 
cell interactions in UC  

Chapter 4 Microbe - host interaction Bt - immune cells Role of Bt BEVs on immune cells 
focusing on the TLR pathway in 
healthy and UC conditions 

Chapter 5 Microbe - host interaction Microbiota - epithelial cells Understanding the effect of 
healthy and periodontitis-related 
microbiome composition on 
epithelial cell signalling  

Chapter 5 Intercellular interaction Epithelial cells - dendritic cells Effect of disturbed epithelial 
signalling on DCs during severe 
periodontitis 

1.2 Gastrointestinal tract 

The gastrointestinal tract (GI tract) involves organs of the digestive system between the oral 

cavity and anus. The human GI tract is approximately 7m long, and its total surface is around 

300 m2 with multiple levels of invaginations 5. This structure facilitates the main functions of 

the GI tract - digestion and nutrient absorption - but as later chapters will introduce, immune 

homeostasis maintenance is also among its main objectives 6,7. Maintaining this balance of 

defending against pathogenic organisms and ensuring the commensals' environment is 

challenging. However, epithelial barriers via tightly connected cells, secreted antimicrobial 

peptides and specialised immune responses enhance this defence mechanism 7.  

In the thesis, I observed the disrupted homeostatic functions of the epithelial layer in the oral 

cavity and the gut; therefore the following two sub-chapters introduce their anatomical 

structures and highlight the crucial cell types which are exposed to external stimuli (i.e., 

intercellular or interspecies interactions). 
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1.2.1 Oral cavity  

The oral cavity is the entrance to the digestive system, including lips, buccal mucosa, tongue, 

gingiva, teeth, hard palate, retromolar trigone (area behind wisdom teeth) and salivary glands 
8. The gingiva surrounds and protects the teeth; it is covered with a layer of stratified squamous 

epithelium, which acts as the first barrier of defence against pathogens. This layer consists of 

keratinocyte stem cells (1-10%), transit-amplifying cells (~50%) and postmitotic differentiating 

cells in early-stage keratinisation (~40%) 9. The epithelial cells establish three layers: junctional 

epithelium (JE), oral sulcular epithelium (OSE) and gingival epithelium (GE) 10 [Figure 1.2]. 

The non-keratinized JE lies at the base of the gingival sulcus. It is directly connected with the 

tooth surface by several intercellular interactions (e.g. hemidesmosomes, desmosomes, 

adherens junctions, and gap junctions). Here, the cells are flat with loose cellular junctions, 

abundant in organelles and have large nuclei 11. By expressing cytokines and chemokines, JE 

can indirectly control the microbes through recruiting immune cells 12,13 [Figure 1.2].  

OSE is an intermediate area between the junctional and gingival epithelium. OSE and JE 

interact with the subgingival microbiome; hence, they play a crucial role in the immune 

response14 [Figure 1.2]. 

GE is the keratinised external layer of the gingiva 15. In contrast to the JE, cells in the GE are 

tightly arranged polygons with less intercellular space and round nuclei in the centre 11. I 

focused on JE and OSE in the thesis because GE is not in direct contact with the subgingival 

microbiome [Figure 1.2]. 
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Figure 1.2: Gingiva in periodontal health and disease conditions. GE - gingival epithelium, OSE - 
oral sulcular epithelium, JE - junctional epithelium. Commensal bacteria are highlighted by green while 
pathogens appear by red colour. The figure was drawn by myself. 

1.2.2 Intestine 

The intestinal tract has two main sections: the small intestine and the large intestine. It consists 

of cells deriving from three main cell lines - epithelial, immune and stromal cells - organised in 

four layers: mucosa, submucosa, muscularis and serosa. The mucosa involves the epithelial 

layer, lamina propria and muscularis mucosae - a thin muscular layer. The submucosa is 

mainly a thick connective tissue layer with blood and lymph vessels, and neurons of the enteric 

nervous system. Muscularis is a thick layer of smooth muscle, while serosa (or visceral 

peritoneum) is the outer layer surrounding the gut 16.  
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Small intestine and colon differ at many points regarding their structure and cell types. In the 

thesis I worked with gene expression data of colon cells, therefore this part of the intestine is 

in the centre of the thesis. Following the small intestine where the enzymatic digestion of the 

food takes place, the colon absorbs the remaining water and ions. Here, the digestion is slower 

and commensal microbes are responsible for it instead of enzymes. Regarding its anatomical 

structure, the colon lacks in microvilli, is enriched in Goblet cells and decreased in Paneth 

cells, and also includes deeper crypts compared to the small intestine. 

I focus primarily on the epithelial and secondarily on the immune cells in the colon, therefore, 

I would like to introduce the common cell types in the epithelial layer and the immune system.  

Epithelial cells 

Epithelial cells build up the mucosal layer, which serves as a physical barrier, and they defend 

against pathogens and secrete and absorb molecules. In the intestine, to increase the surface 

area for absorption, the intestine developed Lieberkühn-crypts, which are fold-like 

invaginations of the epithelium 17. While the crypts are more expressed in the small intestine, 

in the colon these structures are less deep and include tubular pits, which increase in depth 

towards the rectum 18.  

Intestinal stem cells (ISC) are multipotent adult stem cells capable of renewing themselves and 

differentiating into a limited number of gut cells. There are around six ISCs at the bottom of 

each Lieberkuhn-crypt. The connection of ISCs with other epithelial and mesenchymal cells 

subserve the homeostatic behaviour 19. Stem cells can renew themselves by an active Wnt 

signalling pathway. Through the Notch pathway, these multipotent cells can also differentiate 

into short-living transit-amplifying cells that are rapidly proliferating - but not differentiating - 

cells with a limited number of cell cycles 20 [Figure 1.3]. Alteration of the WNT and Notch 

pathways can lead to the malfunction of differentiation causing diseases, such as cancer 21 or 

inflammatory bowel disease (IBD) 22.  

Short-living transit-amplifying cells differentiate into progenitor cells that are also multipotent. 

However, these progenitors quickly differentiate further to more specialised cell types. In the 

intestine, there are two types of progenitor lineages: absorptive and secretory. These lineages 

determine two main cell types. Absorptive cells (enterocytes) require an active Notch pathway 

in the progenitors, while in secretory progenitors (producing goblet, enteroendocrine and tuft 

cells), the WNT pathway is triggered 23,24 [Figure 1.3].  
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Absorptive cells 

Enterocytes, the most common cell type in the intestinal epithelium, build up a polarised 

monolayer with tight cell-cell adhesive interactions [Figure 1.3]. Their function is related mainly 

to absorption - microvilli on the apical surface increase their membrane surface -but they also 

play an essential role in host-microbe interactions 25,26. As part of the intestinal epithelium, 

enterocytes can establish a direct connection with the microbiome, such as detoxifying 

bacterial toxins 27. During inflammation, their junctional interactions are disturbed, leading to 

an impaired barrier function 28.  

Secretory cells 

The bottle-shaped tuft cell is a rare cell type in the intestinal epithelium. It has characteristic 

microvilli at its apical side. Tuft cells are also connected to the nervous system by expressing 

acetylcholine 29. Although their functions are less studied, they regulate intestinal epithelial cell 

response to injury. While these cells have been connected to inflammation-related diseases, 

their role in inflammation remains unclear. Experiments in mice show that the marker receptor 

- Dclk1- mediates epithelial repair responses, a process that dysfunctions during induced colitis 
30,31.  

Enteroendocrine cells are part of the secretory system containing either large dense-core 

vesicles or smaller synaptic-like microvesicles 32. They secrete a wide range of peptide 

hormones, but also sense microbial metabolites and release cytokines in response 33. 

Duodenum and terminal ileum express the most enteroendocrine cells, and studies show that 

these cells are strongly affected during Crohn’s disease 34.  

Goblet cells derive from the secretory progenitor cells and undergo a maturation process. 

Therefore mature and immature forms can be distinguished. While immature cells are placed 

in the middle part of the crypt and the vesicle system is less developed, the mature goblet cells 

are at the top of the crypts. They secrete mucin, antimicrobial proteins, chemokines and 

cytokines to strengthen the barrier between the gut lumen and epithelial surface 22,35,36 [Figure 

1.3]. Interestingly, in colon not only the number of these cells is increased but also the epithelial 

layer is covered by a two-layered mucin layer 37. Several studies support that goblet cells are 

affected in IBD. For example, in ulcerative colitis, the number of these cells is often reduced. 

It is still a question whether there is an impaired differentiation or apoptosis is increased in the 

mature/immature cells 22.  
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M cells are the direct neighbours of enterocytes in both small and large intestines. The cells 

are specialised epithelial cells with several characteristic features, such as a lack of apical 

microvilli and the appearance of a basolateral pocket that usually contains a B lymphocyte. 

However, T cells and myeloid cells may also be present [Figure 1.3]. This connection with the 

immune system shows the contribution of these cells to normal immune surveillance 38. The 

primary role of M cells is to deliver microbial antigens to gut-associated lymphoid tissue for 

efficient mucosal and systemic immune responses 39. M cells’ behaviour depends on cytokine 

molecules that also influence inflammation in the gut, hence the role of these cells is significant 

in IBD 40.  

Immune cells 

The immune system is outstandingly important in the gut to maintain the homeostatic state. 

Several factors are responsible for normal immunity, including the gut microbiome with high 

priority 41. Similarly to the epithelial cells, immune cells also derive from a multipotent stem cell 

- called hematopoietic stem cell. Progenitor cells determine the myeloid and lymphoid cell lines: 

differentiated myeloid cells are in the blood while lymphoid cells mediate the production of 

immunity 42.  

Myeloid cells 

Monocytes derive from myeloblast cells and can differentiate into macrophage and dendritic 

cell subpopulations in the blood. During inflammation, monocytes go through the endothelial 

cells and differentiate into anti- and pro-inflammatory macrophage subsets in the tissue. 

Macrophages are heterogeneous cells rapidly adapting to the changes in the 

microenvironment 42. Besides their main phagocytic activity, as a professional antigen-

presenting cell type (APC), macrophages also play a role in the maintenance of T cell 

subpopulations, clearance of apoptotic cells, and maintenance of epithelial barrier integrity 43. 

Dendritic cells’ (DCs') main role is in T cell response via their APC activity. Classical DCs are 

divided into two subsets: DC1 has CD8α+ and CD103+ on their surface while DC2s are 

characterised by CD11b+ and CD172a+ 44,45. Experiments show that in the inflamed intestine, 

the number of CD103+ DC1 cells is reduced. Based on studies, intestinal inflammation causes 

the malfunction of DCs that leads to dysregulated T cell responses and tissue damage 46.  
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Lymphoid cells 

B cells are a core part of the adaptive immune system. Antigen-activated B cell receptors 

(BCRs) initiate B cell differentiation to plasma cells. Beside the adaptive immune response, B 

cells are professional APCs and contribute to effector T-cell activation. Not surprisingly, B cells 

show abnormalities in inflammatory diseases, including the aberrant expression or function of 

key signalling molecules and cytokines, as well as perturbations in the development of B cell 

subsets 47. 

Similarly to B cells, T cells are also a key part of the adaptive immune response. Intestinal T 

cells have two subgroups, conventional and non-conventional T cells. Conventional T cells 

derive from CD4!CD8! progenitors in the thymus and develop into CD4+ or CD8+ T cells. These 

cells subsequently migrate to peripheral lymphoid organs, such as lymph nodes, where they 

encounter antigens and acquire an activated effector phenotype that drives their migration to 

the gut. CD4+ helper T cells have a CD4 glycoprotein at their surface. They become activated 

by binding the MHC II complex expressed on the surface of APCs and through rapid 

proliferation, they differentiate into several subpopulations (Th1, Th2, Th17, and Treg). In 

contrast, CD8+ cytotoxic T cells recognise a short part of the MHC I complex leading to cytokine 

expression and apoptosis triggering 48,49. In IBD, patients have normal amounts of CD4+ T cells 

and CD8+ T cells, however, their activation is different to the normal condition 50. It manifests 

in an increased expression of major lymphocyte activation antigens, such as interleukin-2 

receptor, transferrin receptor and 4F2, on the cell surface 51. 

Innate lymphoid cells (ILCs) are a heterogeneous group of immune cells dividing into five main 

groups: ILC1, ILC2, ILC3, natural killer (NK) and lymphocyte tissue-inducer cells 52. Without 

their antigen receptors, they sense the changes in the environment by cytokine receptors. In 

the intestinal mucosa, ILCs block pathogen infection by secreting IFN-gamma but also promote 

IBD and cancer through IFN-γ, IL-17 and IL-22 expression 53. 

In contrast to CD8+ T cells, NK cells do not require antigen presentation for cytokine secretion. 

However, they also have a cytolytic function that destroys the target cell 54. In the intestinal 

tract, NK cells can trigger inflammation through several signalling pathways (e.g. Toll-like 

receptor (TLR) signalling) 55. During intestinal inflammation, NK cell-related cytokine secretion 

is increased 56. 
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Stromal cells 

Intestinal stromal cells are part of the mesenchymal compartment. The stromal cells 

(fibroblasts, myofibroblasts, pericytes, endothelial cells, and smooth muscle cells) are 

connected to the epithelial and immune cells. These cells have common characteristics such 

as abundant collagen production, expression of vimentin and α-smooth muscle actin filaments, 

and a lack of surface CD45 expression 57. Evidence shows that stromal cells are strongly 

influenced by intestinal inflammation 58. 

Fibroblasts are localised close to the basolateral surface of epithelial cells 59 [Figure 1.3]. These 

cells are responsible for establishing the extracellular matrix by secreting collagen and 

fibronectin molecules. Fibrosis is a well-known complication of intestinal inflammation caused 

by mesenchymal cells, such as fibroblasts, that secrete an immoderate amount of extracellular 

matrix 60.  

Myofibroblasts are subepithelial cells in the intestine sharing features of fibroblasts and smooth 

muscle cells 59. Mifflin et al. described strict criteria of being a myofibroblast; based on their 

definition, myofibroblasts are ‘spindle-shaped or stellate cells that are α-SMA positive, vimentin 

positive, smooth muscle myosin negative but non-smooth muscle myosin positive, fibronectin 

positive, and very weakly positive or negative for desmin’ 61. Myofibroblasts are also 

responsible for fibrosis during intestinal inflammation 62.  
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Figure 1.3: Lieberkühn-crypts in the healthy and inflamed colon focusing on cell types analysed 
in the thesis. In healthy condition, intestinal epithelial cells establish a tightly connected barrier and the 
differentiated cells secrete mucus and antimicrobial peptides to inhibit the direct interaction between 
pathogens and the host immune system. In contrast, the continuous layer is disrupted during 
inflammation which allows microbes to reach immune cells and lead to cytokine secretion. I modified 
the original figure drawn by Isabella Hautefort, member of our research group. 
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1.3 The human microbiome 

Around 38 * 1012 microorganisms inhabit our tissues and organs, while a human adult body 

consists of 30 * 1012 cells 63,64. It was estimated in 2012 that there were approximately 10,000 

different bacterial species that made up the human microbiome (source: 

https://www.nih.gov/news-events/news-releases/nih-human-microbiome-project-defines-

normal-bacterial-makeup-body). However, the exact number of strains is difficult to determine 

as it's constantly changing and varies from person to person. The number of genes expressed 

in the human microbiome is estimated to be around 246 millions (source: 

https://microbiomepost.com/how-many-genes-make-up-the-human-microbiome/). A study 

from 2010 has shown that the genetic diversity of the microbiome is much greater than that of 

the human genome, with the estimated number of microbial genes in the human body being 

around 150 times greater than the number of human genes 65. Due to the development of 

omics technology, this number is probably much higher currently.  

The composition of the microbiome differs between organs/tissues and also between 

individuals as these living communities have adapted to distinct environments 64. The Human 

Microbiome Project was the first interdisciplinary effort to describe microbial communities, 

initially analysing samples from 300 healthy adults, including 18 body sites 64. The appearance 

of omics data [details in section 1.6] boosted individual microbiome analysis that has extended 

our knowledge about the communities. 

The most diverse microbial communities inhibit the gut, oral cavity and skin 666667,6866. The skin 

is our largest organ therefore the microbiome composition has an essential role to defend 

against pathogens and the maintain homeostasis of skin cells 69. Around 1000 bacteria species 

inhabit the skin besides fungi, archaea, viruses, and mites are also represented in the 

community 70. The diversity and composition of the skin microbiome can vary greatly 

depending on factors such as age, genetics, diet, and environment. While in the gut the 

microbiome stabilises around 3 years of age 71, the microbial community of the skin changes 

during time, especially during puberty when lipophilic organisms are enriched on the skin 69. 

As Unilever is interested in the effect of the microbiome on scalp, I investigated the scalp 

microbiome in more detail, although due to confidential reasons, the thesis doesn’t include 

data analysis related to this microbiome - tissue interactions. The scalp microbiome is less 

discovered; currently, there are 89 articles related to the ‘scalp microbiome’ keywords in 

PubMed (September 2022). The community of microorganisms differs on the scalp compared 

to the skin. The microbiome of the skin is more affected by the different external factors like 
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moist, dry and sebaceous microenvironments 69. On the scalp, then microbiome diversity is 

lower and mainly the Malassezia, and Propionibacterium and Staphylococcus taxa are 

enriched 72,73. 

The gut microbiome is currently a hot topic in the research since the appearance of meta-

omics data [details in Chapter 1.6.2]. While in 2013 the literature described around 300 to 500 

bacterial species 74, a study published in 2019 described around 8000 strains 75. The gut 

microbiota is a complex community of commensal bacteria, fungi, and viruses in the human 

intestinal system. The composition of the microbiome is influenced by many environmental 

factors (e.g. diet or use of antibiotics) 76. In the past years, the definition of the ‘core’ gut 

microbiome has been changed: while earlier the core community was defined by microbial taxa 

which overlap among people, currently, researchers believe that the core microbiome could 

be defined by genes and/or metabolic capabilities that can be explored by meta-omic data 

[details in Chapter 1.6.2]. The disturbance of the core microbiome leads to changed regulation 

of host cellular processes 77. 

The oral microbiome is the second-largest microbiome in humans, containing a complex 

community of a vast spectrum of species from bacterial, viral, fungal and protozoan taxa. As 

an open community, it does not have a permanent structure because there are several factors 

which influence its composition, such as food or the condition of teeth 68. While in 2010 around 

600 species were known in the oral cavity 78, currently ~ 700 species have been described as 

a result of the omic data revolution 68 [details in Chapter 1.6]. Around 96% of the species 

belongs to the phyla of Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, 

Bacteroidetes, and Spirochaetes in the Bacteria domain 79,80. 

Healthy microbiota - consisting of microbes that colonise the host in normal circumstances and 

do not usually cause disease - is important for maintaining homeostasis. Disruption of the 

microorganism communities leads to dysbiosis when the equilibrium state of commensal and 

harmful pathogens is disturbed 81. Therefore dysbiosis is not necessarily associated with the 

appearance of new pathogens, in most cases, there are disease-associated bacteria with an 

increased abundance compared to the healthy condition 82. There are several factors that can 

contribute to dysbiosis, including poor diet, antibiotic use, chronic stress, and exposure to 

toxins or pollutants. Dysbiosis is also seen in certain medical conditions such as diabetes, 

autoimmune diseases, and cancer 83.  
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When the balance of beneficial and harmful bacteria is disrupted, this can lead to inflammation 

in the gut. The gut microbiome plays a key role in maintaining the integrity of the gut lining and 

regulating the immune response, so when the balance is disrupted, it can lead to an overactive 

immune response and inflammation through altered signalling pathways 84. Inflammation in the 

gut can also lead to dysbiosis, as the inflammatory response can damage the epithelial layer 

and alter the environment for the gut microbiome. This can make it difficult for beneficial 

bacteria to survive and thrive, while allowing harmful bacteria to overgrow 84. Dysbiosis has 

been linked to various inflammatory conditions such as inflammatory bowel disease (IBD), 

autoimmune diseases, allergies, and metabolic disorders. Anti-inflammatory diet and some 

probiotics can help to reduce inflammation and restore the balance of the gut microbiome 85. 

A dysbiotic community is usually characterised by a reduced diversity of the microbiome, this 

has been associated with many diseases, such as IBD in the gut, periodontitis affecting the 

gingiva or eczema on the skin 86. Interestingly, while the number of taxa is decreased during 

dysbiosis, the variability of microbes is increased 87. As the ‘Anna Karenina principle’ says, 

healthy microbiomes are similar to each other while the disease associated microbiomes differ 

from each other 88,89. Another assumption is that the dysbiosis potentially causes dysanaerobic 

processes based on the oxygen hypothesis. This rule is based on the observation that in the 

dysbiotic intestinal microbiome, the obligate anaerobic taxa are shifted to facultative anaerobic 

species 90.  

In the gut, a dysbiotic microbiome may be characterised by (1) an overgrowth of pathogenic 

bacteria such as Escherichia coli, Clostridium difficile, or Salmonella 91; (2) a decrease in the 

abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium 92; (3) an increase 

in the ratio of Firmicutes to Bacteroidetes, this ratio is usually associated with obesity and 

metabolic disorders 93; (4) an increase in proinflammatory bacteria and a decrease in anti-

inflammatory bacteria 94. 

Microbiologists distinguish two groups of bacteria based on the membrane structure: Gram-

positive bacteria consist of a thick peptidoglycan layer and periplasm 95. In contrast, the cell 

wall in Gram-negative bacteria has three layers: the outer membrane, peptidoglycan layer and 

periplasm 96. The diverse outer coat infers an altered communication with the host cells and 

tissues. Although microbes in both categories can produce small, nano-sized extracellular 

vesicles to transport bioactive molecules to the host cells, the composition differs between 

them. Gram-negative bacteria secreted vesicles consist of lipopolysaccharide (LPS), in 

contrast, Gram-positive vesicles contain lipoteichoic acid 97 [for details, see Chapter 4]. 
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The gastrointestinal tract is exposed to several factors, such as diet or smoking that have an 

impact on tissue homeostasis. Therefore, the microbiome has a crucial role in the maintenance 

of physiological conditions 67,68. In general, studies analyse the oral cavity and gut separately, 

however, they are not only linked physically but also share microbes. The ‘oral – gut 

microbiome axis’ expression describes the oral-to-gut and faecal-to-oral translocation of 

microbes 98. In healthy condition, the overlap is less between the communities due to functional 

barriers, such as gastric acid or bile. Nevertheless, an impaired oral-gut barrier leads to the 

translocation of microbes and contributes to a diseased condition 98. Further details about the 

gut and oral microbiome are described in Chapter 4 and Chapter 5. 

1.4 External signals affecting the epithelium 

The tightly connected epithelium is exposed to both host cell factors and the microbiome, 

therefore intercellular (cell-cell) and interspecies (cell-microbe) interactions are crucial in the 

epithelial layer 99,100.  

1.4.1 Cell-cell interactions 

Cell-cell interactions are essential for growing and differentiating multicellular organisms by 

transducing the signal from cell to cell 101. These interactions are specific and highly regulated 

due to their significant impact on physiological processes 102. Disruption of the intercellular 

interactions affects the homeostatic processes and leads to diseases. Understanding the 

mechanisms of cell-cell interactions is crucial to the development of new therapies and 

treatments for a wide range of medical conditions 101. Despite its importance, the molecular 

background is less well described due to the lack of data. With the increasing amount of high-

throughput data (genomics, transcriptomics, proteomics, etc - details in Chapter 1.6) available, 

bioinformatics tools such as network analysis, machine learning and computational modelling 

can be used to infer cell-cell interactions 103–111.  
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NicheNet 110 is a computational tool, available as an R package, to model cell-cell 

communication. It uses network-based approaches to identify key players in a particular 

pathway or biological process, based on the analysis of large-scale genomic and proteomic 

data. The core of the algorithm is based on the principle that genes that are functionally related 

tend to be co-expressed or co-regulated, meaning that they are often active at the same time 

and in the same tissue or cell type. NicheNet uses this principle to identify functional 

relationships between genes by analysing patterns of co-expression in various experimental 

data sets such as gene expression microarrays, RNA-seq, or proteomics data. It requires 

ligand–receptor, signalling and gene regulatory networks as input then infers a weighted 

network prioritising source cells based on their ligands’ effect on target cell gene expression. 

NicheNet was the first pipeline which explored the downstream response in the target cell. Like 

any computational tool, NicheNet has certain limitations that should be considered when 

interpreting the results: (1) the quality and quantity of the input data can greatly affect the 

accuracy and reliability of the results; (2) the results are specific to the biological context in 

which the analysis is performed, meaning that the predictions may not be valid in other contexts 

or cell types; (3) as the predictions made by NicheNet are based on statistical association, 

there is a risk of false positives, meaning that some interactions or functional relationships 

predicted by the algorithm may not be biologically relevant; (4) NicheNet does not provide 

information about the directionality of these interactions, meaning that it cannot distinguish 

between activating and inhibitory interactions 110,112.  

CellphoneDB 111 is a computational tool that predicts ligand-receptor interactions by analysing 

the structural and functional properties of proteins. The tool uses a structural alignment method 

to identify similar binding pockets in proteins, which are then used to predict potential ligand-

receptor interactions. It also uses functional annotation information, such as gene ontology 

terms and enzyme commission numbers, to identify proteins that are likely to be involved in 

similar biological processes and therefore more likely to interact. The predictions are ranked 

based on the basis of their total number of significant P values across the cell populations 111. 

The main limitations of the tool are that (1) it does not include all of the possible ligand-receptor 

interactions, therefore analysing cell-cell interactions can be misleading; (2) the statistical 

method that calculates p-values and ranks the interactions is based on the Importance of the 

PPI in the downstream signalling in the target cell, therefore a non-significant interaction does 

not mean that the LRI is not present, but it is not highly specific between the source and target 

cells 111. 
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LIANA (Ligand-receptor Analysis frAmework) 109 is a bioinformatics tool for the analysis of 

ligand-receptor interactions. It integrates 16 intercellular resources and 7 methods (including 

CellphoneDB) to analyse large-scale genomic and proteomic data and infer ligand-receptor 

interactions from it. The algorithm combines different scores to rank the intercellular 

interactions with the Robust Rank Aggregation algorithm 113 Compared to NicheNet that 

analyse intercellular interactions and their downstream effect, LIANA is specialised to PPIs 

between cells. Nevertheless, the two approaches are not mutually exclusive, these tools 

discover cell-cell interactions from different points of view 109.  

In the thesis, I distinguished two major cell-cell interaction types while exploring intercellular 

interactions: cell-cell junctions and cell-cell communication through ligand-receptor 

interactions. While junctional interactions support a structural and physical cell-cell interaction, 

ligand binding to the complementary receptor triggers signal spreading through the cell 

mediating intercellular communication 114 [Figure 1.4]. 

Structural cell-cell junctions 

Adhesive cell-cell interactions are mediated by adherens junctions, gap junctions, tight 

junctions and desmosomes 99: Adherens junctions (Ajs) are essential in the development and 

tissue homeostasis, cells are connected through molecules which are anchored to actin 

filaments in the cytoplasm [Figure 1.4]. Ajs help to polarise the epithelial cells and distinguish 

the apical and basolateral membranes, besides these molecular complexes link the adjacent 

cells tightly in the intestinal epithelium, therefore, ensuring its barrier function 100,115. Impaired 

Ajs, which cause incompletely polarised epithelial cells, characterise both CD and UC 

conditions 116. 

Tight junctions (TJs) bind cells only in epithelium and endothelium [Figure 1.4] and give polarity 

to the cells by separating the upper and lower part. In contrast to Ajs, this junctional complex 

contributes to a semipermeable barrier through that small molecules (ions, solutes) can pass. 

TJ complexes control proliferation and differentiation. Disruption of these intercellular 

structures causes impaired barrier function and enhanced inflammatory cytokine secretion, 

leading to inflammation-associated diseases 99,100.  
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Gap junctions (GJs) are essential for growing, developing and maintaining homeostatic 

functions. Molecules establishing GJs – called connexins – are transmembrane proteins 

appearing in clusters and facilitate the nutrient and solute passing into the intercellular space 

[Figure 1.4]. During intestinal inflammation, connexin expression is reduced and re-organised 

from the apical side to the basolateral membrane. These findings suggest a hypothesis that 

intercellular communication is more intense between epithelial cells 117.  

Desmosomes provide mechanical connections between cells rather than controlling the solute 

transport 99. In the cytoplasm, intermediate filaments bind to the cell surface part of the 

molecular complex through desmoplakin – an intermediate filament binding protein 118. Altered 

desmosome structures contribute to the IBD pathology affecting the integrity of the epithelium 

during intestinal inflammation 119. Hemidesmosomes look like half a desmosomes and also 

facilitate cell adhesion, however, these multiprotein complexes mediate interactions between 

the cells and the basal cell membrane in contrast to desmosomes [Figure 1.4]. 

 
Figure 1.4: Intercellular interactions between epithelial cells. Tight junctions, gap junctions, 
adherens junctions and (hemi)desmosomes represent the structural connections, while ion channels, 
transporters and ligand-receptor interactions contribute to the cell-to-cell communication. JAMs – 
Junctional adhesion molecules. The figure was drawn by myself. 
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Intercellular communication by ligand-receptor interactions 

Ligand-receptor interactions (LRIs) constitute a significant class of intercellular interactions 

where the source ligand (small molecule, short DNA/RNA or protein) is recognised by a 

receptor protein. During my PhD, I analysed protein-protein interactions that are the most 

complex LRIs. The distance is large between molecules; besides, precise orientation and 

strong physical binding are needed between the molecules 120. The connection between a 

ligand and receptor is based on precise pattern recognition, and selective molecule binding 

that triggers downstream activation of protein cascades. It was known decades ago that 

competition is also essential in terms of LRIs because one receptor can bind multiple ligands 
121. Binding affinity determines the strength of the ligand-receptor connection, therefore, a low-

affinity interaction can be replaced in the presence of a high-affinity link 122.  

Ligands and receptors are upstream in the signalling pathways, thus their expression shows 

more cell specificity than intracellular proteins 123. Impaired LRIs cause altered downstream 

signalling paths but as a potentially severe consequence leads to activation of other 

signalisation events 124,125. 

Although intercellular protein-protein interactions (PPIs) play an essential role in cellular 

behaviour, cell-cell connections were less studied till the early 2000s. The limitations were on 

the one hand technical – no data about individual cells – on the other hand, there was no 

integrated database that included information about intercellular components and their 

interactions. 

1.4.2 Host-microbe interactions 

Host-associated microbial communities are in continuous interaction with the host cells. 

Modulation of host processes is required for homeostasis 126. However, these interspecies 

interactions have evolved. Microorganisms have adapted to their host and mimic the structure, 

sequence, motif and interface of many host proteins, facilitating host-microbe interactions 

(HMIs) and increasing their influence on host processes 127,128.  

Proteins do not have a rigid structure, their binding sites are dynamic and shared by various 

interaction partners. Even the same target protein can mediate diverse downstream signalling 

events based on their actual binding partner 129. This molecular evolutionary strategy leads to 

competition with  host proteins. Generally, a microbe’s purpose is to benefit from the 
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interaction with the host (e.g., by hijacking or evading the immune system), therefore, 

molecular mimicry is commonly used for immune system-related signalling receptors 127,128. 

Franzosa and Xia introduced the term ‘evolutionary arms race’, which means microbes mimic 

the host proteins, and these target structures evolve to avoid interaction with specific 

microorganisms 128. 

Regarding the effect of bacteria in host signalling, these microorganisms can secrete ligands 

recognised by host receptors 130. Scientists have demonstrated that studying these secreted 

molecules can help us understand diseases and design drugs 131–133.  

In recent years, the appearance of high-throughput experiments has led to increased 

knowledge about human HMIs, and more and more studies have included experimental 

evidence on molecular mechanisms in HMIs 126,134–139. The challenge in this field is to analyse 

large microbial community data and discover the collective effect of the microbes on cell type 

levels in humans. 

1.5 Molecular background of inflammation 

Inflammation is triggered by several infectious (e.g., pathogenic organisms) and non-infectious 

factors (damaged cells, toxins, burn, etc.). These components lead to tissue damage or 

diseases in the human body. Although inflammatory response depends on the type of the initial 

factor and the location in the body, the key events are similar: Firstly, receptors on the cell 

surfaces or in the cytoplasm sense the stimulus. Triggered receptors lead to the activation of 

inflammatory pathways. As a result, the transcriptional program of the cells is changed, and 

the expressed inflammatory markers (e.g. cytokines, chemokines) facilitate inflammatory cell 

recruitment 140. 

  



 

36 

1.5.1 Cytokine secretion 

Cytokines are small molecules (<40 kDa) secreted by various cell types (epithelial, immune 

and also fibroblast cells), playing an essential role in immune response 141. Cytokines can 

stimulate each other, but there are also inhibitory relationships among them to suppress 

positive feedback loops of the inflammatory chemokines. The seriousness of diseases is often 

associated with the inflammation-activated cytokine storm 141,142.  

There are two main groups of cytokines: pro-inflammatory and anti-inflammatory molecules. 

Proinflammatory cytokines facilitate the inflammatory processes therefore contributing to 

inflammatory diseases. Conversely, anti-inflammatory cytokines suppress inflammation by 

responding to the effect of pro-inflammatory molecules 143. While the definition of the two 

groups is self-explanatory, many cytokines, such as IL-6 or IL-8, have anti- and pro-

inflammatory effects depending on the environment (e.g. location, nearby cytokines) 144. 

Cytokines expose their effect by binding to cytokine receptors, emphasising the importance of 

intercellular communication in immune response 145. 

The importance of cytokines in oral health is a well-studied topic. In the saliva, several types 

of these small molecules (e.g. IL-1β) are in contact with the oral mucosa and gingiva 146. 

Microbiome shift contributes to the imbalanced cytokine expression and leads to periodontal 

diseases 147. Studies show that the cytokine expression profile differs in gingival inflammation: 

IL-1β, IL-6, IL-33 and IL-18 are upregulated 148–150, while IL-11 (anti-inflammatory cytokine)/IL-

17 (pro-inflammatory cytokine) ratio is significantly decreasing 151 suggesting the importance 

of pro-inflammatory cytokines in the disease. 

The gut also responds with a disturbed cytokine secretion profile to the dysbiotic state. Figure 

1.5 compares these patterns in the healthy and diseased intestines through the example of 

pathogen-associated inflammation.  
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1.5.2 Pathogen-associated inflammation 

Ligand-receptor interactions are essential in infectious factor-activated innate immune 

response. This intercellular communication is established between pathogen-associated 

molecular pattern (PAMP) carrying molecules (glycans, bacterial proteins, nucleic acids) and 

pattern recognition receptors (PRRs). LPS is one of the most popular Gram-negative bacteria 

secreted glycan that contains short, conserved PAMPs. PPRs are expressed by innate 

immune system-related cell types, including epithelial and immune cells 152. These receptors 

are either on the cell surface, such as some Toll-like receptors (TLR1, TLR2, TLR4, TLR5, 

TLR6, TLR11), NOD-like receptors (NLRs), RIG-like receptors (RLRs) and C-type lectin 

receptors (CLRs) 153, or intracellular (TLR3, TLR7, TLR8, TLR9) 154.  

As a first step of the pathogen-associated inflammation, pathogens cause the contraction of 

epithelial cells through their secreted endotoxins. Disrupted structural cell-cell interactions lead 

to gaps on the cell layer that serve as an entrance for microbes to affect deeper tissue layers 

and contact the immune cells 155. The secreted pathogenic molecules reach the blood vessels 

and burst the continuous endothelial layer. Endotoxins force the endothelial and immune cells 

in the blood to express selectins. This family of cell adhesion molecules facilitates anchoring 

cells to the endothelial layer. Gaps on the surface establish a direct connection between the 

pathogen and immune cells due to the infiltration of immune cells into the tissue area 156. 

Professional APCs (DCs, macrophages and B cells) bind the foreign antigen and present it to 

naive helper T cells (Th) - which have not met that specific antigen yet - through their MHC-II 

complexes. Immature Th cells differentiate into diverse subpopulations based on the nature of 

the presented antigen. While recognising commensal bacteria leads to increased amounts of 

immunosuppressive cells (Th2, Treg), pathogens induce Th1 and Th17 cell expressions 157. 

The immune system activator Th subsets express pro-inflammatory cytokines to attract CD8+ 

T cells. Cytotoxic T cells bind the MHC-I complex, appearing on every cell surface. The cells 

on which this protein complex involves pathogenic antigens, CD8+ T cells induce the apoptosis 

of the infected cells 158 [Figure 1.5]. 

In summary, the intestinal epithelium is exposed to microbial attacks, therefore PPR-mediated 

inflammation is outstandingly important in the cells, therefore almost every kind of PRR is 

expressed by cells in the gut 159. Following the PRR activation, inflammatory signalling is 

induced and leads to pro-inflammatory cytokine and chemokine secretion. The downstream 

effect of PRR activation is to restore the damaged mucosal barrier 159. 
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Figure 1.5: Immune response in healthy condition and during pathogen-associated 
inflammation. The majority of immune cells secrete anti-inflammatory cytokines (highlighted by green) 
in a homeostatic condition. In contrast, pathogen-derived endotoxins enhance the migration of immune 
cells, including CD8+ T cells, a major member of immune system responsible for inflammation, from the 
blood vessel into the tissue that leads to an increased pro-inflammatory cytokine expression (highlighted 
by red). The naive helper T cells differentiate into diverse subpopulations depending on the signals. 
While in healthy tissue Th2 and Tregs dominate, Th1 and Th17 cells are overrepresented during 
pathogen-induced inflammation. This figure was inspired by the following articles 53,157,160–164 and was 
drawn by myself. 
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In the following, I would like to introduce the TLR signalling in detail, because it has been 

closely related to the projects in which I was working during the PhD. 

TLR signalling is one of the innate immunity pathways recognising the extracellular pathogens 

via PAMPs. Based on the manual curations in the SignaLink3 database, there are 203 proteins 

involved in the TLR signalling excluding the regulators of the pathway 165. Receptors and their 

adaptor proteins (molecules that bind to signalling components resulting in protein complexes 

instead of mediating specific PPIs) give the main characteristics of a signalling pathway which 

determine the downstream protein activation. Regarding the TLR pathway, there are ten TLRs 

(TLR1-10), and five TIR-domain-containing adaptors (MyD88, TRIF, TRAM, SARM, TIRAP) 
166 in human with diverse functions and interaction partners. The receptors, as PRRs in 

general, are expressed not only on antigen-presenting cells but also on most cell types in the 

epithelium. In a normal condition, TLR signalling is less active due to decreased receptor and 

increased receptor inhibitor expression 159,167. TLR pathway regulates both inflammatory and 

anti-inflammatory responses, disruption of this balanced state results in dysregulated 

inflammation or abnormal epithelial regeneration. Its main role is to control cytokine secretion, 

therefore, influencing the appearance of regulatory T cell subpopulations. The impaired 

signalling causes uncontrolled gastrointestinal inflammation. Studies show that PRR-related 

gene mutations assist in the development of idiopathic IBD 168,169. TLR signalling has a dual 

role, it can activate inflammation in the gut but it is also responsible for stopping it and repairing 

the epithelium in IBD 159. 
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1.6 Omics data 

Omics data and technologies are large high-throughput (HT) or large-scale assays that 

measure different kinds of molecules from biological samples. Based on the examined 

molecular object (highlighted in brackets) the main omics areas are: genomics (genome), 

epigenomics (epigenome), transcriptomics (transcriptome), proteomics (proteome), 

metabolomics (metabolome), microbiomics (microbiome), lipidomics (lipidome) 170. Since the 

past decade, these large-scale datasets have been dominating the biological data generation 

field, because omics data gives an insight into biological processes on a systems-level 171. 

Single-omics data measures one molecular object (e.g. protein abundance or gene 

expression) while multi-omics approaches cover not only data coming from the same samples 

at the same time, but also describe the combination and integration of single-omics datasets. 

Analysis of clinical samples by new technologies has expanded our knowledge about the 

molecular background of a wide spectrum of disorders 172–177. 

The advantage of omics data generation is that the complex set of information gives a more 

precise and realistic insight into biological processes. However, it is difficult to store and handle 

big data. Also, large-scale methods increase the false positive rate in datasets compared to 

small-scale experiments 178. Not only the generation of omic data is challenging but also their 

analysis. The appearance of a new data type always infers the development of new 

computational pipelines 177,179–181.  

1.6.1 Host omics data 

Host omics data reveal the cellular processes from different aspects depending on the data 

type. Genomics analyses the genome - the total amount of DNA in a cell - of the organism and 

reveals functional information implied in the DNA sequence. It reveals genetic diversity and 

genomic variation and can also highlight mutations in the nucleic acid sequence 182. Based on 

estimations, there are around 24,000 protein-coding genes overall in humans 183, but genetic 

information differs among people. The reference genome is the standard DNA sequence that 

derives from multiple donors and represents the pan-human genome 184. Researchers use this 

standard to align and assemble genome sequence data. Due to the continuous improvement 

of assembling techniques, the reference sequence has been updated with time. The most 

current version is the GRCh38.p14 published by the Genome Reference Consortium in 

February 2022 185. 
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Transcriptomics measures the total amount of RNA in cells and infers gene activities in the 

organism. The two major approaches to discovering transcriptional profiles of tissues and cells 

are microarray and RNA sequencing (RNAseq) techniques. Firstly the microarray assay was 

invented in the 1990s, this technique is based on hybridisation to predefined transcripts. In 

contrast, RNAseq can describe the whole transcriptome without prior assumptions of what 

sequences are present 186,187. The identification of new transcripts and other advantages (such 

as exploring allele-specific expression and splice junctions, independence from genome 

annotation for prior probe selection) has meant that microarrays have been replaced by 

RNAseq 187.  

Regarding the sequencing approach, there are two different approaches: bulk and single-cell 

(sc) profiling. Bulk sequencing is a large-scale analysis of cell lines or tissues, it describes an 

average expression of genes across thousands of cells. Its advantages are the cost-

effectiveness and the ability to reveal the altered molecular background of compared 

conditions (e.g. healthy vs diseased).  

Single-cell sequencing is a relatively new methodology, it was used first in 2009 on mouse 

cells by Tang et al 188. This approach gives a high-resolution insight into the tissue composition 

by detecting the RNA content of samples at the individual cell level. Based on the individual 

gene expression profile, dimensionality reduction algorithms facilitate the clustering of cells 

and use markers to distinguish cell subpopulations [Figure 1.6]. There are several existing 

algorithms (such as UMAP 189, t-SNE 190, IsoMap 191 or DiffusionMap 192) that use different 

approaches to reduce the dimensionality and facilitate the understanding of cell clusters 

visualised on diagrams. 



 

42 

 

Figure 1.6: Uniform manifold approximation and projection (UMAP) of cell clusters after cell type 
identification using single-cell RNAseq data from the oral cavity. The figure has been created by Matthew 
Madgwick processing a public dataset 193. 

Single-cell approaches are becoming more popular in clinical research. In contrast to bulk RNA 

analysis, it gives an insight into the cell type and condition-specific gene expression patterns 

that enables biomedical researchers to better understand the molecular background of 

disorders 194 [Figure 1.6]. Due to the complex analysis, data storage requires more space, and 

computational analysis is more time-consuming than the bulk approach 195. Details about 

analysing single-cell transcriptomics are described in Chapters 2 and 3. 

The level of detected transcripts does not always correlate with the amount of proteins in 

samples due to translational regulation. The term ‘proteomics‘ was used first in 1995 to 

describe the analysis of protein content in samples 196. Due to differences in gene expression 

patterns, the set of proteins also differs between cells, conditions or individuals. The first step 

of proteomic profiling is protein extraction from collected samples. Gel electrophoresis 

facilitates the separation of proteins based on molecular mass and isoelectric points. The next 

step includes the enzymatic digestion of proteins, the resulting peptides are analysed by mass 

spectrometry (MS). MS is an essential tool to detect the molecular weight of proteins, 

completing the analysis with tandem mass spectrometry (two or more mass analysers are 
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coupled) which then enables peptide sequencing. Finally, computational analyses are used for 

the identification of proteins based on sequenced peptides. The challenges in the field of 

proteomics are the following: (1) separating peptides/proteins in the gel can exclude potential 

candidates that have extreme weight or isoelectric points; (2) proteins with low abundance are 

may excluded from the analysis, (3) analysis of proteins with lipophilic features (e.g. membrane 

proteins) 197,198.  

Proteins influence the phenotype of cells through their participation in biological processes, 

therefore, exploring interactions between proteins is crucial in studying cellular behaviour. PPI 

detection methods (often also called interactomics) have been expanded over the last decade 

with the appearance of HT screens. Based on the environment, these techniques are grouped 

into in vitro, in vivo and in silico categories. The main experimental approaches are the tandem 

affinity purification-mass spectroscopy, affinity chromatography, coimmunoprecipitation, 

protein microarrays, protein-fragment complementation, phage display, X-ray crystallography, 

NMR spectroscopy, Yeast 2 hybrid (Y2H) and synthetic lethality [details in Chapter 3] 199.The 

in silico methods are using computational algorithms to infer PPIs. These tools gain information 

from in vivo and in vitro experiments, and predict new potential connections based on these 

interactions [details in Chapter 3]. There are four possible outcomes of the predictions cases 

if the interaction is predicted in silico and experimentally verified, the result is a true-positive; if 

experimental evidence was not found then it is a potential false-positive result though future, 

targeted experimental tests may be needed to verify the PPI’s existence in a given living 

system. Similarly, if two proteins are not connected computationally and there is no evidence 

for the PPI a true negative prediction occurs, however, if they are found to interact, it is a false-

negative prediction outcome 200.  

1.6.2 Meta-omics approach 

Microbial communities have been studied for decades to understand the complex relationships 

and interactions between organisms that share the same ecological niche and the function of 

the community as a whole 201. Recent technological advances, including the development of 

large-scale omics methods, make such approaches possible, where mixed microbial 

communities are considered as one meta-organism 202. 
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It is essential to determine the microbial composition in the host because dysbiosis-related 

diseases (e.g. diabetes, periodontitis, IBD) affect more and more people worldwide. Due to the 

importance of the topic, the number of microbiome analyses has been rapidly increasing. Toh 

and Allen-Vercoe revealed that - based on PubMed - around 500 articles included the term 

‘Human microbiome’ in 2008, reaching almost 4000 in 2013 203. At the end of 2021, this number 

reached 21,594 (source: PubMed - https://pubmed.ncbi.nlm.nih.gov/).  

The first observation of bacteria was by Leeuwenhoek in 1673. The first artificial bacteria 

culture, established 200 years later by Louis Pasteur 204, let researchers discover a broad 

spectrum of microbes 205. The evolution of microbiology led to a paradigm shift that promoted 

culture-independent approaches, allowing researchers to explore microbial communities' role 

in human diseases 206.  

Culture-dependent methods have several drawbacks, the most important being that there are 

bacteria that cannot be cultivated in artificial media due to the lack of knowledge about their 

metabolism and physiological requirements 207. The first study describing viable but non-

culturable microorganisms, was published in the early 1980s 208. This finding established a 

new direction in microbiology, a sequence-based approach to studying complex microbial 

communities, firstly using 16S rRNAs 209,210 and then completing the analysis with whole-

genome profiling 211. 

Meta-omics data, including metagenomics, metataxonomics, metatranscriptomics and 

metaproteomics, describes microbial community composition, expressed genes, proteins and 

metabolic pathways 212. Each meta-omics data type (layer) reveals a different aspect of host-

microbe interactions 213. The following paragraphs describe these features and their relevance 

in HMIs. 
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High-throughput sequencing-based on methods to study microbial 
communities 

The isolation of microbial genes and genomes from biological samples has extended our 

knowledge about microbiome composition, especially about unculturable taxa. 

Metataxonomics and metagenomics provide information about microbiome composition while 

metatranscriptomics describes regulation in the microbial community. 

Metataxonomics explores the diversity of microbiome communities, it reveals the abundance 

of microbial taxa and also highlights global composition differences between samples. A 

metataxonomic workflow consists of the following steps: sample taking, DNA extraction, 

amplicon sequencing of phylogenetic markers (16S rRNAs), processing sequences, taxonomic 

analysis and comparative analysis 214.  

16S RNA genes are highly conserved across microbial taxa consisting of conserved and 

variable regions 215. The choice of primer is essential for marker gene amplification. It should 

cover most bacterial species using universal primers, but some species remain unresolved. A 

short sequence, called a barcode, is added to the 5’ end of the primers to identify the different 

samples during the analysis 216. 

Following the amplicon sequencing, quality control steps filter the reads. Reads are nucleotide 

sequences and depending on the sequencing method, they can be short or long. Quality 

control software, such as QIIME2 217 or Mothur 218, trims the end of the sequences and removes 

duplicated and low complexity reads. These steps facilitate the selection of high-quality reads 

without human DNA contamination 219. Taxonomic profiling with 16S rRNA results in a species-

level identification of the microbiome community composition. During the analysis, the 

processed reads are mapped to reference gene sequences using public databases (e.g. Silva 
220 or GreenGenes 221 ). The output is an operational taxonomical unit (OTU) or amplicon 

sequence variant (ASV) table. OTUs describe sequences extremely similar to each other, 

represented by consensus sequences from clustering analysis. In contrast, ASVs reveal a 

single exact sequence with high confidence 222. Finally, alfa and beta diversities are measured 

to determine and compare microbiome compositions. Bioinformatics tools, such as PICRUSt2 
223 or Tax4Fun 224, carry out a functional analysis. The biggest advantage of this methodology 

is the fast and cost-effective 16S rRNA sequence analysis. Also it can examine correlations 

between the microbiome community composition and the host condition. However, 

metataxonomics gives information about taxonomical composition at low resolution and does 
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not reveal the absolute quantity of microbes 225. Metagenomics analyses whole genome 

nucleotide sequences isolated from complex microbiomes 212. The workflow is similar to 

metataxonomic protocols, however this approach analyses the whole genome instead of the 

marker gene. Following the DNA extraction from samples, shotgun sequencing randomly 

creates short reads. Assembling the filtered reads into larger constructs, called contigs, can 

be done by mapping them to a reference genome or using de novo assembling methods to 

identify new genomes. These steps enable gene detection, their functional annotation and 

finally to taxonomic analysis. The advantage of metagenomics is that it can identify microbes 

at the strain level. Also, using de novo assembling new pathogens can be identified from 

samples. Nonetheless, gene/genome identification does not give details about gene 

expression, only the presence of genes is obtainable, besides the analysis is costly and de 

novo assembly is time-consuming and requires a robust computational background 226. 

With these new methodologies, the number of identified microbes has steeply increased. For 

instance, in the case of the oral cavity, this number has jumped from ~280 different bacteria 

identified by culture-dependent methods to 700 species 80. There are several metataxonomic 

studies describing the oral microbiome 80,227–229. The first study was published in 1995 about 

Haemophilus parainfluenzae 230. In the last twenty years, researchers established databases 

to store reference genomes based on meta-omics experiments. National Center for 

Biotechnology Information (NCBI), Human Microbiome Project (HMP) 64 and Human Oral 

Microbiome Database (HOMD) 78 are the main sources of oral microbiome data. HOMD 

(http://homd.org) is the currently most comprehensive resource which involves core taxa from 

the literature and 16S rRNA sequences obtained in their laboratory or from GenBank 78.  

Metatranscriptomics analysis explores the microbial RNA content of samples. This approach 

provides information on the regulation and expression profiles of complex microbiomes 212. 

Analysing the meta-RNA gives a more detailed insight into the interactions between microbes 

and between microbes and the host. The workflow consists of experimental steps (sample 

collection, bacterial extraction, RNA purification and sequencing) and computational data 

analysis: raw data pre-processing, de novo assembly, taxonomic analysis, functional 

annotation and differential expression analysis. The upstream part of the analysis is very 

similar to the previous two meta-data analysing approaches. Assembling the high-quality reads 

into putative transcripts helps to identify the taxonomic composition of the microbial 

community. Functional annotation is one of the most important steps in the 

metatranscriptomics pipeline because it infers the functional activity of the microbiome. 

Differential expression analysis is optional, but it enhances the understanding of an altered 

condition compared to the control 231. The advantages of metatranscriptomics are that it 
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captures only living organisms, and due to de novo assembly, it does not require reference 

data. Also, it can compare different communities and their activities 232. However, there is no 

information about translational and post-translational modifications. 

There are challenges in the metatranscriptomics area: on the one hand, the analysis requires 

many data points/reads by short-read sequencing technologies; on the other hand, longer 

reads would help the assembling and taxonomical/functional annotations. Completing 

metagenomics and metatranscriptomics with other approaches (e.g. metaproteomics, 

metabolomics) can improve the insight into the composition and function of the microbial 

community 213. 

Metaproteomics methods to study microbial communities 

Metaproteomics describes the protein content of the microbial community in a given sample. 

The term was used first in 2004 by Rodriguez-Valera 233 analysing environmental samples. 

Proteins play the most important role in cellular functions, therefore measuring their abundance 

correlates with microbial activity 234. 

A general metaproteomic workflow consists of sampling, protein extraction and purification, 

separation of microbial proteins and digesting them into peptides and then mass spectrometry 

analysis. Databases provide information for the taxonomic analysis or de novo peptide 

sequencing that can discover new proteins. Finally, data interpretation helps to identify 

pathways and infer information about system functioning 202,234.  

There are several advantages compared to HT sequence-based methods: metagenomic and 

metataxonomic data do not provide any insights into microbial activity, and also, data typically 

include numerous genes with unknown functions (Ram et al., 2005). Besides, 

metatranscriptomics does not allow translational regulation to be considered 202.  

More and more metagenomic and metataxonomic data are becoming available, however, only 

a small number of metaproteomic studies have been reported. There are experimental and 

data analysis-related challenges in this field. In the ‘Host omics’ section, I mentioned the major 

limitations, however, metaproteomics includes additional computational challenges. Due to a 

lack of complete bacterial sequences (experimentally cultured, sequenced and characterised 

strains), mass spectrometry data analysis is challenging, and peptides can be mapped to a 

variety of homologous proteins from different species 201,235.  
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1.7 Data processing and modelling 

Discovering the role of the microbiome in host signalling requires integrating data from different 

sources. Omic data is highly interconnected, each approach explores the samples from a 

different point of view. Modelling cellular behaviour by multi-omics data analysis requires 

systems-level representation and analysis to facilitate the understanding of complex, 

interconnected processes 236. Systems biology aims to integrate and model complex biological 

processes and their interactions. Instead of focusing on one object in an experiment, it gains 

a holistic view of cellular processes in response to external stimuli 236,237.  

1.7.1 Network biology approaches  

Appearance of HT and omics technologies in the past two decades has led to large data 

generation and rapid development of the computational biology area. Using networks 

facilitates the representation and visualisation of large data. There are two main directions of 

network modelling: (1) static networks can represent and integrate small-scale and HT data 

sets, but the objects and their interactions are not changing, (2) in dynamic models, the network 

structure changes over time, the approach is used for computational simulations and 

mathematical modelling 238,239.  

Graph theory and network science 

Networks describe pairwise connections between organisms or objects. The entities in the 

network are called ‘nodes’ and interactions between them are ‘edges’ [Figure 1.7]. Graph 

theory is part of mathematics and computer science but it is also applied in several other areas 

of science, e.g. physics, sociology, and medicine. The definition of the network (theory) is 

similar to graph (theory) but not the same. Graph theory is often described as the mathematical 

foundation of network science 240. Also, the terminology differs between the two objects: a point 

is called ‘vertex’ in graphs but ‘node’ in the network. Similarly, there are ‘edges’ between the 

vertices in a graph and ‘edges’ or ‘links’ between the nodes in a network. In biological networks, 

nodes can be different kinds of molecules (e.g. RNAs, genes, proteins), organisms or 

pathways, interactions can be physical relationships, associations or even regulatory 

connections 241.  
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In a network, links can be directed or undirected. The first term describes a connection between 

source and target nodes (e.g. regulation), while in the second case, interactions do not have 

directions between the nodes (e.g. co-expression). Edges also can be unweighted or weighted. 

An unweighted network represents equal connections between entities; edges in a weighted 

network are measured by weight (e.g strength of an interaction) 241. Besides holistic data 

analysis, networks are usually used for data visualisation. Node (size, colour, shape, label, 

etc), edge (thickness, colour, etc) and network (layout) attributes facilitate understanding 

patterns in large data sets 242 [Figure 1.7].  

Network topology refers to the arrangement of nodes and edges and gives information about 

networks' sub-structures. In terms of network analysis in the thesis, the most important 

topological parameters are degree, hub, and shortest path. The degree of a node is the number 

of interactions a node has in the network. Unlike the average in the graph, nodes with much 

higher connectivity are called hubs. These points have a huge impact on the network, removing 

hubs from the network leads to disconnected graphs 241,243,244. Translating it to the field of 

biology, the mutation or deletion of these genes/proteins often leads to a lethal phenotype (e.g 

knock out of chaperon proteins) 245,246. The shortest path measures the minimal number of 

edges which connect nodeA to nodeB 243,244, it is equal to the functional distance between two 

molecules 247. 
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Figure 1.7: Introduction to networks and graph-based pathfinder algorithms. A, Structure of a 
directed molecular network highlighting its topological parameters used in the thesis. Numbers in the 
circles show the degree number. B, Classifying the key pathfinding algorithms discussed in the thesis 
(S – source node, T – target node).The figure was drawn by myself.  
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Computational algorithms are able to identify paths in the network using different topological 

parameters. As large hairball networks are difficult to be analysed, the path finding algorithms 

filter to the enriched subnetworks in the whole graph. Although there are several algorithms to 

solve this issue, the approaches are different based on the type of the graph and its 

parameters.  

Network diffusion algorithms propagate information through the network based on the 

connections between nodes 248. One example of a network diffusion algorithm is the Random 

Walk with Restart algorithm. This algorithm simulates a random walk on the network, where at 

each step, the algorithm has a probability of moving to a neighbouring node or staying at the 

current node. This process is repeated many times, with the goal of reaching a steady state in 

which the probability of being at each node is proportional to the degree of connectivity of that 

node 249. Network diffusion algorithms are used by TieDie 250, NBS 251 and NBS2 252, mND 253 

and many other tools (the full list is available in this review 248).  

In contrast, there are algorithms that handle weighted graphs and look for the optimal 

subnetwork including the edge attributes. The spanning tree algorithm creates a loop-free 

subgraph including the selected nodes, the minimum spanning tree aims to connect the 

vertices through edges with the minimum weight. This algorithm is often used in neuroscience 

analysing the connectivity of the brain 254. PHYLOViZ 255 and CySpanningTree 256 tools are 

examples for the usage of the spanning tree algorithm. 

 

There are a group of algorithms that connect pre-determined start (source) and end (target) 

points in the network. The shortest path algorithm uses the weights of the edges to find the 

path that minimises the total distance. This method is often used in molecular networks, for 

instance for inferring regulatory networks 257. The shortest path is often used to estimate the 

functional distance between two molecules and identify functional clusters in the network 247. 

CARNIVAL 258, PesCa 259 and PathExt 260 are examples for shortest path using tools. 

The Prize-collecting Steiner Forest (PCSF) algorithm infers a subnetwork including most of the 

selected nodes (terminals; e.g. expressed genes in a transcriptomics dataset) from the network 

connecting them with the minimum weights of edges. The novelty of the algorithm is that the 

nodes which were not selected, so called Steiner nodes, can establish a bridge between 

terminals that are not directly connected. The algorithm gives penalties for the following nodes: 

Steiner nodes, hub nodes and terminals that can’t be connected to the subnetwork. Hub nodes 

are misleading in the graph as these points (or molecules in a biological network) usually have 

diverse connections (or functions) and disturb the simplicity of the graph. The goal of PCSF is 

to minimise the cost and maximise the prize in the subnetwork therefore that subnetwork tries 
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to include the most terminals and less hub and Steiner nodes connected by the least weighted 

edges 261. Such tools are the web-based OmixIntegrator (http://fraenkel-

nsf.csbi.mit.edu/omicsintegrator/) 262 and the PCSF R package 261. 

Biological networks 

Biological networks represent relationships between molecules and organisms but also 

between regulatory, signalling and metabolic pathways. In contrast to experiments, these 

models reveal complex interactomes and patterns of biological systems. The main aim of these 

models is to integrate, analyse and visualise complex data 263. This thesis focuses specifically 

on molecular networks to discover cellular behaviour on systems-level under different 

conditions. 

The appearance of transcriptomic data and network biology approaches inferred new 

methodologies to analyse gene regulation on systems level. Gene regulatory networks consist 

of genes and DNA/RNA or protein molecules connected through regulatory interactions. These 

models can be used for (1) causal mapping of molecular interactions between transcription 

factors (TF) and their target genes (TGs), (2) guiding experimental design by highlighting 

potentially important regulatory interactions, (3) identifying biomarkers, (4) comparing the 

regulatory profile of diverse conditions (e.g. healthy vs. diseased), (5) drug design 264. 

This thesis focuses on the transcription factors (TFs) regulating different genes in inflamed 

conditions and connects them to the activated signalling by the bacteria. TFs are proteins 

including DNA binding domain which binds to a specific DNA element (enhancer, silencer or 

promoter region) and enhances or inhibits gene transcription depending on the binding region. 

Based on a study, there are ~1600 potential TFs in the human genome 265. Altered TF - target 

gene interactions disrupt the normal gene expression pattern resulting in disorders 266. 

Cross-talk between signalling pathways coordinates biological processes in the cell. Signals 

flow through molecular interactions such as protein-protein or metabolic interactions and 

biochemical reactions. The aim of signalling networks is to understand the communication 

system that controls cellular behaviour in different environments and conditions 263.  

This thesis focuses on the role of altered signalling in inflammation compared to a healthy 

condition through analysing PPI networks. PPI analysis is a major focus of systems biology 

due to the pivotal role of proteins in cellular behaviour 267. The global human protein 



 

53 

interactome describes all the PPIs which are currently known by experiments or in silico 

predictions. This large network highlights that proteins can have diverse sets of interactors but 

currently, it is less studied how these PPIs vary in time and differ between tissues or cell types 
268. 

1.7.2 Databases and tools 

Molecular databases (DBs) are structured sets of different kinds of data essential for 

computational biology. These collections involve experimentally verified and computationally 

predicted information about molecules and their interactions in different organisms. The 

number of biological databases has been steeply increasing, based on articles, there were 281 

molecular databases in 2001 269, while this number was between 500 - 1000 in 2003 270. With 

the appearance of HT experiments and omics data, this number rose to more than 1700 based 

on an analysis in 2018 which explored the published DB articles in NAR (Nucleic Acids 

Research) journal 271.  

HT screens and omics approaches expanded the knowledge about the existing genes, 

proteins and their features (e.g., sequence, structure). From 2004 - when UniProt was 

published - until 2015 around 90 000 000 protein sequences have been described. Based on 

Chen et al, gene and protein DBs can be grouped into the following sets: sequence databases, 

2D gel databases, 3D structure databases, chemistry databases, enzyme and pathway 

databases, family and domain databases, gene expression databases, genome annotation 

databases, organism-specific databases, phylogenomic databases, polymorphism and 

mutation databases, protein-protein interaction databases, proteomic databases, PTM 

databases, ontologies and specialised protein databases 272.  

It was reported in 2005 that although there are numerous biological DBs, a high percentage of 

them are not up-to-date due to a lack of stable funding for these projects 273, due to the steeply 

increasing number of DBs, the situation is even worse in 2022. In the following sections, I 

would like to introduce the main DBs/tools involved in the development of workflows presented 

in this thesis. 
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Sequence databases 

UniProt Consortium is a central resource for protein sequences and annotations. From its four 

databases (UniProt Knowledgebase (UniProtKB), UniRef, UniParc and Proteomes), 

UniProtKB and Proteomes have been used in the projects. UniProtKB combines 

reviewed/curated Swiss-Prot entries with the unreviewed TrEMBL identifiers (IDs) that are 

annotated by automated systems. Currently, there are more than 65 million UniProtKBs in the 

database, an increase of >50% in just 2 years. Every protein in the database has a profile 

where its annotations are available. This knowledge consists of the protein sequence, function, 

taxonomy, subcellular location, post-translational modification (PTM), expression, interactions 

and structure by collecting external databases (e.g. Gene Ontology database (GO), Pfam) and 

literature evidence 274. 

UniProt Proteomes consists of 20 125 reference proteomes and 327 987 non-reference 

proteomes 274. Regarding their distribution in superkingdoms, there are 238 208 proteomes in 

Bacteria, 103 543 proteomes in Virus, 3 172 proteasomes in Archaea and 3 189 proteomes in 

Eukaryota as of 30/08/2021 (source: www.uniprot.org/proteomes/).  

Protein structure databases 

Technological improvements established an increased number of experimental methods which 

detect protein structures, such as X-ray crystallography, Nuclear magnetic resonance (NMR) 

spectroscopy, or cryo-electron microscopy 275 Nevertheless, the number of in silico structure 

prediction algorithms (e.g. homology-based prediction by BLAST 276 ) is steeply raising which 

led to an explosive growth of known protein structures.  

The smallest structural unit is the motif, a short, conserved amino acid sequence associated 

with distinct functions of proteins. Short linear motifs (SLiMs) - sub-sequences of usually 3 to 

20 amino acids - are essential for dynamic PPIs therefore they have an important role in 

signalling 277,278. Eukaryotic Linear Motif (ELM - http://elm.eu.org/) is a computational resource 

for SLiM collection. The database annotates experimentally verified motifs and arranges them 

into classes based on the functions which SLiMs mediate. Motifs are flexible patterns, there is 

no need to know the whole sequence, usually regular expressions describe SLiMs 279.  
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Domains are tertiary structural components which are often functional units on their own. 

These compact folded components are key regulatory participants of signalling 280. Pfam DB - 

developed by the European Molecular Biology Laboratory (EMBL) - is the largest domain 

collection; there were 19 632 entries derived from multiple organisms in the DB in December, 

2021 281. 

Regarding the tertiary or quaternary structural levels, there are DBs which give information 

about the 3D structure of proteins. Protein Data Bank (PDB) is a central resource that collects 

information about experimentally verified 3D structures of large biomolecules 282. Besides, 

there are other DBs, like ModBase 283, SCOP 284, SWISS-MODEL Repository 285, that infer 

protein structures by comparative, evolutionary or homology modelling. 

Protein-protein interaction databases 

PPI DBs collect outcomes from small and large-scale experiments [details in Chapter 3] but 

some of the resources integrate data from in silico predictions as well 286. Most DBs use the 

standardised PSI-MI (proteomics standards initiative - molecular interaction) format to store 

interaction data 287. This XML-based data type unifies details about experiments to avoid 

overlapping information deriving from diverse databases. 

Currently, the most popular, frequently updated PPI DBs are STRING 288, IntAct 289and BioGrid 
290. Bajpai et al collected 375 PPI resources and selected the top 16 databases for comparative 

analysis 291. Among the examined parameters, there are the number of total PPIs, 

experimentally verified interactions and exclusive interactions. The study concluded that 

STRING is the most ideal resource to collect the most interactions, also, this database contains 

the most information about experimentally verified links. 

In an ideal case, every database should contain the same information using the same 

publications, but there are differences in curation efforts. Also, there is a long list of protein or 

gene IDs which are used by molecular databases, such as protein name, gene symbol, Uniprot 

ID, Ensembl ID, Gene ID, Refseq ID. Mapping the IDs links the databases, but it is not a simple 

process, because of the different versions and redundancy of IDs 292. There are many 

algorithms which help to solve this problem using different approaches 292–296 although it is 

important to keep it in mind that manual curation causes an initial difference among data 

repositories. 
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Not only the ID mapping causes differences in data curation but also DBs often filter or rank 

the interactions based on scores estimated by a diverse set of parameters. For instance, 

STRING DB offers confidence scores measured by the type of interaction evidence (text 

mining, experiment, data in another database, co-occurrence, co-expression, etc); and 

transferred scores when an interaction has been described in another organism and through 

homologue/orthologue prediction the two proteins are connected in the species 288. Both 

scores have a value between 0 (two proteins are not interacting) and 1 (two proteins are likely 

to interact).  

The structure and content of PPI DBs have been improved in the last decades. Although there 

are still differences between them, using a standardised format and the hierarchical annotation 

of interactions instead of filtering facilitate the data integration. During my PhD, I have been 

involved in the development of the OmniPath database, therefore a detailed section (Chapter 

2) describes this molecular interaction resource. 

Pathway databases 

Biological pathways include interactions between molecules that facilitate the signal spread 

through the cell. Pathway DBs contain two main types of information, a list of pathway 

members and/or interactions between molecules.  

Reactome is a freely available DB, which contains manually curated data about signalling and 

metabolic molecules and their relation to pathways in multiple species. Regarding the human 

organism, it contains 10720 proteins, in 2546 pathways. ReactomeDB describes not only 

pathways but also splits them into reactions. Currently 13890 reactions exist in the database 

as of 03/12/2021. The database has R and Python packages to use its data automatically but 

it is available through a website (https://reactome.org/) where graphical views are available for 

each reaction 297,298. 

KEGG (Kyoto Encyclopaedia of Genes and Genomes) is a large integrative biological resource 

which consists of 16 databases. KEGG Pathway (https://www.genome.jp/kegg/pathway.html) 

- developed in 1995 - has collected manually curated reference paths and computationally 

predicted organism-specific paths 299. Compared to Reactome, it contains information about 

only 540 pathways (last updated: 24 March 2022), also KEGG uses more broad terms to 

describe pathways. All in all, currently, KEGG is less suitable for pathway analysis but still 

works for enrichment analysis. 
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Signalink3 (SLK3 - http://signalink.org/), developed by our group, is currently one of the largest 

signalling pathway resources. In contrast to ReactomeDB and KEGG Pathway, SignaLink3 

contains information about pathway regulators on diverse levels (transcriptional, post-

translational, etc) in humans and other popular model organisms. The database has details 

about 13 pathways: RTK (Receptor Tyrosine Kinase, containing all MAPK and Insulin 

subpathways), TGF-β, Wnt, Hedgehog, JAK/STAT, Notch, NHR (Nuclear Hormone Receptor), 

B- and T-cell receptor, Hippo, Toll-like receptor and innate immune pathways. Currently 

(December 2021) there are 17,918 proteins and more than 700 000 interactions between 

signalling molecules 165. 

Ontology databases 

Ontologies describe and classify the context of a biological entity (interaction, protein, etc) 

thereby facilitating the data analysis and giving a focus for studies. These terms include 

diseases, developmental stages, molecular functions, location, anatomy, pathways, etc. While 

these annotations contribute to the context-specific analysis, from a DB infrastructure point of 

view, it is challenging to handle and standardise ontologies 300. The Unified Medical Language 

System (UMLS) addressed this issue by developing standardised biomedical terminology for 

annotations 301. UMLS integrates ontologies from several databases, such as OMIM 302, NCBI 

Taxonomy 303 and GO 300. 

GO - developed by Gene Ontology Consortium - annotates genes and their products in a tree-

like structure where parent and child categories are represented in a hierarchical way. The 

ontologies are grouped into three sets: molecular functions, cellular location and biological 

processes. GO is not species-specific therefore the database enables cross-species 

comparisons 304,305. 
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1.8 Aims and Objectives 

This chapter introduced the main areas of biology and bioinformatics that are covered by the 

PhD project. I highlighted the current challenges in the existing methods, such as analysing 

large microbiome data and exploring cell type and condition-specific host-microbe interactions. 

These gaps aimed to be addressed by new technologies, such as omics approaches, including 

single-cell sequencing) and systems biology methods. Therefore, the primary research aim of 

this iCASE PhD project was to establish computational pipelines to predict host-microbe 

interactions and their cellular effects based on multi-omic data analysis using network biology 

approaches. The following objectives have been defined to achieve the goals of this PhD 

project:  

1. Computational analysis of intercellular communication using single-cell 

transcriptomics data. 

2. Distinguish and list healthy and inflammation-related bacterial strains of the 

gastrointestinal tract, and predict their condition-specific interactions with the host using 

multi-omics data. 

3. Functional analysis of the microbiome targeted host proteins to reveal the processes 

directly affected by bacteria. 

4. Development of standardised, semi-automatic bioinformatics pipelines to enable 

reusability, and make in silico interspecies and intercellular analysis accessible for 

researchers without strong computational background.  
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Chapter 2 - Development of in silico approaches to 

study intercellular communication 

2.1 Introduction 

In multicellular organisms, cells are interacting with their environment and also with each other 

through a vast spectrum of molecules that ensures the growth and differentiation by spreading 

the signal from cell to cell. In junctional interactions, cells are physically connected via various 

structural complexes while cells interact through chemical signals in cell-cell communication 

[details in Chapter 1.3.1].  

Both junctional interaction and cell-cell communication are crucial in the epithelial layer, these 

connections allow the cells to grow, differentiate and proliferate properly. This coherent surface 

establishes a barrier that separates the outer environment, the living space of external 

microbes, from the internal milieu, including stromal and immune cells. Hence, the interaction 

between epithelial and hematopoietic cells contributes to tissue homeostasis. Inflammation 

causes impaired cell-cell interactions hence disrupting the continuous layer that allows immune 

cell infiltration. For instance, the malfunction of tight junction structures leads to altered 

cytokine secretion, resulting in new cell-cell interactions 99,117 via immune mediators. This 

chapter focuses on the development of a semi-automated pipeline that infers cell-cell 

interaction networks from single-cell transcriptomics data. In a case study, I explored altered 

cell-cell interactions in inflammatory bowel disease (IBD).  

The knowledge about intercellular communication is scattered across different resources. 

Despite its importance, the molecular background is less discovered due to the lack of data. 

As mentioned in details in Chapter 1.6.2, there are existing methods to connect cells using 

predictions [REF] or combine experimentally verified knowledge with computational pipelines 

[REF]. However, the effect of the altered intercellular interactions on downstream signalling is 

less discovered. This gap has been addressed with the combination of single-cell omics and 

network biology approaches that provide an insight into the gene expression and molecular 

interactions of individual cells [details in Chapter 1.6.2] 114.  
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Signalling databases are crucial for omics data analysis [details in Chapter 1.7]. OmniPath is 

an integrated, literature-curated resource for signalling pathways. The first version was 

published in 2016 and consisted of 27 popular interaction resources describing the human 

interactome. Not only protein-protein interactions (PPIs) were represented in the database, but 

OmniPath also provided rich annotations on the properties of proteins, including function, 

localisation, and role in diseases.  

In a collaborative project with Julio Saez-Rodriguez’s group in Heidelberg, we updated 

OmniPath in 2020, this time combining over 100 resources into one single database. The new 

version covers the interactions and role of proteins in signal transduction and also 

transcriptional and post-transcriptional regulations. Besides, OmniPath became available for 

mice and rats via homology translation and includes information about intercellular signalling.  

There are existing databases describing ligand-receptor or junctional interactions, also there 

are resources that highlight intercellular protein annotations. The novelty of OmniPath is, firstly, 

the data integration that reveals new potential cell-cell interactions through merging 

annotations and existing PPIs. Secondly, OmniPath is accessible via the web service at 

https://omnipathdb.org/, as a Cytoscape plugin 306, and packages in R/Bioconductor 

(OmnipathR) and Python (pypath), providing convenient access options for both computational 

and experimental scientists 107.  

I contributed to the computational development of the ‘pypath’ Python module, and carried out 

a quality control check of the intercellular interactions and annotations using the literature. I 

also demonstrated the capabilities of the new OmniPath through the implementation of a case 

study about intercellular communication in ulcerative colitis (UC).  

Inflammatory bowel disease 

IBD describes disorders that cause chronic inflammation in the gastrointestinal tract. Its 

symptoms range from mild (e.g. fatigue) to severe (e.g., abdominal pain and blood in the stool). 

The number of people suffering from IBD has increased steeply in the last decade. In the past, 

IBD has mainly affected developed, Western countries (based on studies in 2018, the highest 

prevalence was in North America 307), while today studies show that IBD is more and more 

prevalent in more recently industrialised countries, such as China and India 308. In 2020, Based 

on the analysis carried out by The Global Burden of Disease Study published that in 2017 

around 3.9 million females and 3 million males were living with IBD 307. IBD is a multifactorial 
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disorder, several external (environment, diet, age, etc) and internal (genetic background, 

microbiome, immune-mediated tissue damage, etc) factors influence its emergence 309.  

The two major forms of IBD are Crohn’s disease (CD) and ulcerative colitis (UC). In CD, 

inflammation can affect the small or large intestine and can be continuous or involve multiple 

segments (skip lesions) 310. UC affects the colon and the rectum, compared to CD, 

inflammation appears in the mucosal layer avoiding the deeper submucosal layers. While IBD 

is not curable, various treatments can reduce the symptoms and ensure remission 311. 

A recent single-cell study 312 revealed that intercellular connections were changed in UC. The 

altered ligand-receptor connection affected the dynamic of cell populations. For example, the 

elevated level of IL-18 cytokine in inflamed enterocytes led to an increased amount of Treg 

cells due to IL-18 receptor expression on their surfaces 312. The triggered receptors on immune 

cells mediate pro-inflammatory cytokine expression causing an amplified inflammatory 

response in the gut and leading to an imbalanced immune response 313. The limitation of their 

approach is that the authors focused on cell type- and condition-specific LRIs. However, the 

developed intercellular interaction pipeline discovers adhesive interactions as well without 

restricting the analysis to LRIs between cell markers and differentially expressed genes. 

This chapter focuses on an in silico pipeline that establishes ligand-receptor interaction 

networks combining single-cell transcriptomics and network resources. The public data 

analysis expands the interactions to junctional connections between cells and identifies gaps 

in our knowledge about cellular communication in inflammation. The intercellular interaction 

pipeline and the case study were published in Molecular Systems Biology 107. 

 

  



 

62 

2.2 Methods 

The intercellular interaction pipeline discovers intercellular rewiring between diverse cells using 

single-cell RNAseq data from healthy and diseased conditions. Transcriptomic data describes 

a list of genes with expression values. There is a need for a reliable network resource that 

describes potential PPIs to infer cell-cell connections. The pipeline builds up contextualised 

networks by combining the two kinds of information to highlight the cell type-specific signalling. 

OmniPath provides inter- and intracellular interactions and protein annotations to infer cell-

specific signalling networks [Figure 2.1]. 

 

Figure 2.1: Workflow for analysing intercellular interaction and their downstream effect.  

2.2.1 Identifying intercellular interactions among different cell types 

I downloaded all intercellular interactions from OmniPath using the OmniPathR R package 

(version 3.15 on Bioconductor) and filtered the interactors based on their subcellular locations 

in OmniPath. OmniPath collects information from many resources including Gene Ontology 

DB 304, UniProt 274, Human Protein Atlas 314, LOCATE 315, ComPPI 316 and a literature collection 
123 (more details about the script collecting location information can be found here: 

https://github.com/saezlab/pypath/blob/3820c3a28c13ce701f1d2b5f9ac6e00834c757da/pypa

th/core/intercell_annot.py). I discarded extracellular matrix proteins and regulators of 

intercellular proteins (ligand-, receptor- and matrix adhesion regulators) as these molecules 

usually appear in the cytosol. Therefore I focused on membrane-based or secreted proteins 

(membrane-based or secreted ligands, membrane-based receptors, thigh junctions, gap 
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junctions, desmosomes or other adhesions, ion channels, transporters and cell surface or 

secreted enzymes). Importantly, because proteins are multi-functional molecules, some 

interactions were duplicated due to the diverse protein annotations (e.g. A2M protein has both 

adhesive molecule and receptor annotations). 

2.2.2 Single-cell data processing 

I analysed a publicly available single-cell RNA-seq published by Smillie et al 312 to explore 

interactions between cells in the intestinal tract. The dataset was utilised in the study due to 

several key factors. Firstly, it was deemed representative of the research problem, with a focus 

on inflammatory bowel disease. Secondly, the sample size was substantial, with biopsies 

collected from 18 patients with the disease and 12 healthy individuals. Additionally, the 

research methods and techniques used in the dataset were highly relevant, as it was the first 

(and only) available dataset at the time of analysis (in 2019) that examined gene expression 

patterns at the cellular level, comparing samples of healthy, non-inflamed, and inflamed 

ulcerative colitis. The processed scRNAseq data included 51 cell types from epithelial, immune 

and stromal cell lineages. Finally, the dataset was highly accessible, with both raw and 

processed data available for public use. Matthew Madgwick, a PhD student in our group, 

developed an internal pipeline, called ScOmix, to analyse transcriptomic data and processed 

the published raw single-cell RNAseq dataset (available at Single Cell Portal under SCP259 

ID) using the original parameters from the article 312. Briefly, the Cell Ranger pipeline 317 was 

used for processing single-cell RNAseq data prior to analysis according to the instructions 

provided by 10x Genomics. The resulting FASTQ files were aligned to the human reference 

genome GRCh38/hg19 and subsequently filtered and count files generated for each sample. 

The gene expression matrices of healthy, non-inflamed and inflamed samples were integrated 

together for cell annotation and direct comparisons. Then entries with a few genes were filtered 

to remove any dead or dying cells from the data. To account for differences in sequencing 

depth across samples, expression values were normalised for total Unique Molecular 

Identifiers (UMIs) per cell and the counts were log-transformed. The highly variable genes were 

selected for downstream clustering to confirm that the clusters matched the original 

annotations.  

Output files described the average expression of genes under healthy, non-inflamed and 

inflamed UC. I selected the healthy and non-inflamed UC conditions, to study the effect of 

intercellular interactions on cellular behaviour.  
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2.2.3 RNA-seq data filtering 

I filtered the average gene expression matrix to discard the lowly expressed genes because 

they frequently derive from the technical or biological noise of the experiment. In general, z-

score transformation helps to standardise data across a wide range of values 318. The z-score 

(also known as a standard score) is a measure of how many standard deviations an 

observation or data point is from the mean of a distribution. It is calculated by subtracting the 

mean of the distribution from an individual data point, and then dividing by the standard 

deviation of the distribution. A z-score can describe how unusual a data point is within a 

distribution. A z-score of 0 indicates that the data point is exactly at the mean of the distribution. 

A z-score of +2 or -2 would indicate that the data point is two standard deviations away from 

the mean.  

Hart et al published a z-score-based normalisation method that determines which genes were 

expressed using a comparison between expressed genes and active promoters 319. While the 

authors applied it for FPKM data (Fragments Per Kilobase of gene model per Million mapped 

reads ratio), I adapted their methodology and used it for log2-based expression values instead. 

I kept genes where the z-score was greater than -3, a cut-off suggested by the authors 319. 

This value includes those genes where the expression value is higher than three times the 

standard deviation below the mean. 

2.2.4 Reconstructing a cell-cell interaction network 

I implemented a Python script to build up cell-cell interaction networks based on a predefined 

list of selected cell types. In the case study, I selected five cell types from the processed single-

cell dataset: goblet cells, myofibroblasts, DCs, Tregs and macrophages. These cells have a 

crucial role in intestinal homeostasis and are involved in UC pathogenesis 320–324. I combined 

the intercellular interactions from OmniPath with cell-specific gene expression patterns derived 

from the single-cell transcriptomic dataset and examined all possible connections of cells by 

pairwise comparisons. The focus of this study was on rewired cell-cell interactions during UC, 

therefore, I selected the condition-specific interactions between cells. I defined condition-

specific interactions by their exclusive appearance either in the healthy or in the diseased state. 

The extent of the condition-specificity was measured by the number of unique intercellular 

PPIs in healthy and UC samples [Figure 2.2]. 
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2.2.5 Building up ligand-receptor interaction networks between 

myofibroblasts and regulatory T cells 

I analysed the cellular communication between myofibroblasts and Tregs in more detail 

focusing on ligand-receptor interactions. I grouped the similar ligands (e.g., CCL2 and CCL3 

= CCLs) and merged the connections within groups. Although this misses the different effects 

of paralog ligands, it results in a simplified LRI network that highlights the main ligand-activated 

downstream signalling. I assigned pathways to the receptors defined in the SignaLink3 

database 165 to improve biological insight and visual clarity [Figure 2.3]. One receptor can be 

part of several pathways, hence I selected the most relevant one using knowledge from the 

literature. Differences between conditions have been visualised by the Circos R package 325. 

I established a Treg-specific signalling network using intracellular interactions from the 

OmniPath Cytoscape application 306 and single-cell data, limiting the large PPI network to 

genes expressed in Tregs. I focused on the upstream part of the triggered pathways by ligands, 

therefore the receptors and their first two neighbours (proteins, that the receptor can reach in 

two steps) were selected for a pathway enrichment analysis using the online interface of the 

Reactome pathway knowledgebase 297 (https://reactome.org/) with its default settings 

(hypergeometric test, Benjamini–Hochberg FDR correction, the human genome as the 

universe gene set). 

  



 

66 

2.3 Results 

2.3.1 Semi-automated pipeline to build cell-cell interactomes 

The primary workflow focuses on ligand-receptor interactions (LRIs) between source and 

target cells in healthy and diseased conditions. It consists of two parts: building up the cell-cell 

interaction network (Python script) and visualising the LRIs on circos plots in R. The inputs are 

(1) intercellular interactions (built in table, derived from OmniPathR), (2) a processed single-

cell transcriptomic dataset describing the average gene expression (user-provided) and (3) a 

list of cells that will be connected and compared in healthy and diseased condition (user-

provided). Currently, the pipeline is able to handle the gene expression data in a fixed table 

format describing the genes in the first column and the cell types and condition in the further 

columns. Therefore the pipeline is not sensitive to how the user pre-processed the 

transcriptomic dataset. 

The pipeline can be downloaded from GitHub 

(https://github.com/korcsmarosgroup/uc_intercell). Following the cloning of the repository 

enables the user to run the pipeline. The intercellular interactome can be built up from the 

Terminal, using the following command: python intercell_pipeline.py --scdata ‘path to the 

single--cell transcriptomics’ --cells ‘list of interacting cells’; while the visualisation takes place 

in RStudio, running the circos_LRI.R script. 

2.3.2 Analysing intercellular interactions in healthy and diseased colon 

I analysed the filtered average gene expression matrix from single-cell data in healthy and non-

inflamed UC samples [Table 2.1] and combined them with intercellular interactions to build up 

the cell-cell interaction networks. From the 22,550 PPIs derived from OmniPath, I discarded 

regulators - as these molecules mostly appear in the cytosol - and extracellular matrix proteins 

- due to focusing on direct cell-cell interactions - which resulted in 22,283 PPIs between 1800 

source proteins and 2074 target proteins connecting cells. I combined the expressed genes 

from the five cell types with the general intercellular PPIs to observe the cell-cell connections.  

Focusing on the differences in cell-cell interactions between the healthy and diseased colon, I 

filtered the potential intercellular PPIs to condition-specific connections (PPI represented only 

in healthy or diseased conditions). Although each cell could potentially bind to each other, the 

type of communication was divergent based on the results. I found significantly fewer 
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intercellular PPIs in UC networks. Interestingly, the number of interactions targeting 

myofibroblasts or Tregs remains the same in both conditions [Figure 2.2, Supplementary Table 

2.1]. Supplementary Table 2.1 indicates the difference in the number of PPIs between the 

conditions. The outcome of the analysis shows that LRIs and adhesion connections are 

dominating in both conditions between cells, probably due to the high number of these PPIs in 

OmniPath (9439 adhesive and 9565 LRIs). In contrast, I found 76 PPIs between the cells that 

describe tight junction, desmosome and gap junction connections. These results indicate that 

intercellular communication varies among cells, moreover the analysis suggests that cell-cell 

interactions are potentially weaker in UC. 

Table 2.1: Number of expressed genes in cell types 

Cell type Healthy colon UC 

Goblet cell 13 744 12 561 

Myofibroblast 11 884 12 135 

Dendritic cell 10 558 7 501 

Regulatory T cell 11 881 11 609 

Macrophage 14 225 14 092 

Based on the results, intercellular communication appears different between the five cell types 

in UC condition compared to healthy cell-cell interaction networks. Macrophages, Tregs, goblet 

cells and myofibroblasts target the dendritic cells with significantly more interactions in healthy 

condition. In contrast, the focused targets are the Tregs in UC. The other four cell types 

express more ligands and adhesive molecules that reach the membrane-based target proteins 

on Tregs’ surface in diseased condition [Figure 2.2].  
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Figure 2.2: Pairwise comparison of cell-cell interactions. The thickness and colour of the edges 
indicate the ratio of cell-cell interactions in UC relative to those in a healthy state. The labels on the 
edges display the exact rate. The blue-red colour scale highlights the differences between conditions, 
with blue indicating an increased number in healthy samples, and red indicating a shift in the ratio 
towards the UC condition. Network is visualised in Cytoscape 326. 

2.3.3 Effect of myofibroblasts on regulatory T cells 

I chose the interaction between the myofibroblast and Treg for further analysis. The reason for 

highlighting this cell-cell interaction was that the number of the interactions between cells 

remained similar in both conditions (472 PPIs in healthy colon, 478 PPIs in UC colon), 

however, the function of the corresponding proteins found to be altered during the disease. 

The analysis revealed 208 LRIs in healthy- and 304 LRIs in diseased colon. The latter shows 

a ~30% increase of the annotated communication in cellular communication in UC. At the 

protein level, the 208 LRIs occurred between 32 ligands and 41 receptors, while 36 ligands 

and 41 receptors established the 304 disease-related LRIs. Figure 2.3 depicts circos plots 

highlighting interactions between myofibroblast and Treg. As the analysis focused on 

condition-specific interactions, these results revealed that there could be unique connections 

in both states. Although the number of ligands and receptors is similar, the raised amount of 

LRIs supposes a more active cellular communication in UC. 
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Figure 2.3: Condition-specific connections between myofibroblast ligands (upper semicircles, 
black) and Treg cell receptors (lower semicircles, coloured by pathways) in A, ulcerative colitis 
and B, healthy control. Immune—innate immune response, RTK—receptor tyrosine kinase, TLR—
Toll-like receptor. Circos plots were created by using the ‘circlize’ R package 325. 
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I analysed the role of the target receptors on Treg cell surfaces in downstream signalling 

pathways. I found that all pathways derived from SignaLink3 database (TGF-beta, innate 

immune response, receptor tyrosine kinase, Toll-like receptor, Hedgehog, WNT, Notch and 

JAK/STAT pathways) were affected at some level by myofibroblast ligands. The ligands had 

an impact on all of the pathways in both conditions, however, different receptors driving the 

same signalling were targeted on T cells. The distinct upstream interactions potentially cause 

varying downstream signalling in Treg cells. 

I built up a Treg-specific signalling network for each condition based on the scRNAseq-derived 

contextualised interactome to analyse the downstream effect of altered LRIs. I created a 

subnetwork including the targeted receptors and proteins within two steps (interactions) from 

the receptors. The filtered network consisted of 835 proteins in healthy and 1971 proteins in 

non-inflamed UC condition. This potentially suggests more tight regulation of the Treg cells by 

the myofibroblasts in UC but there is also a chance that there are more understudied processes 

in terms of healthy data. According to Reactome, MAPK, TLR6/2 and TLR7/8 pathways were 

enriched among the 835 proteins in the healthy colon, while in samples from UC patients TLR4 

and TLR3 pathways were overrepresented (p < 0.05; FDR < 0.05) [Figure 2.4, Supplementary 

Table 2.2]. Based on the results, there is a potential shift towards inflammation-related 

pathways during the disease. 

 

Figure 2.4: Intercellular connections and their downstream effect in UC compared with healthy 
control. Condition-specific ligand–receptor connections between myofibroblasts and regulatory T cells 
trigger an immunosuppressive versus inflammatory signalling in T cells, in healthy and UC, respectively. 
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2.4 Discussion 

In this chapter, I introduced an in silico analysis that infers cell-cell networks using OmniPath, 

an integrated resource for intra- and intercellular interactions. The semi-automated pipeline 

consists of two main steps, (1) building up an intercellular network in Python and (2) visualising 

the LRIs using R. The algorithms offer a solution for biologists with limited programming skills 

as the requirements are a single-cell dataset and a list of cells to connect. The output offers a 

potential overview about the key differences in cell-cell interactions between conditions visually 

on a circos plot. Although the intercellular interaction pipeline uses OmniPath, a new and 

integrated resource to study inter and intracellular signalling, it relies heavily on one database 

including only the known interactions, besides it does not prioritise interactions. In the future, 

we plan to integrate scores which contribute stronger to indirect causal relationships. Also, we 

are going to include text mining approaches to extend the interaction annotations to conditions, 

therefore reducing the number of false positive PPIs. Another limitation is that the pipeline 

processes gene expression data but infers PPI networks. Combination of transcriptomic data 

with (phospho)proteomics could solve this issue. Although phosphoproteomics is popular 

among bulk data, there are studies that describe single-cell approaches to identify the cellular 

signalling on individual cell level 327–329. Due to the focus on functional proteins and their 

interactions, this omics data would be the most suitable for the accurate estimation of pathway 

activity. As the current circos plot can handle one signalling (edge colour), if a receptor attends 

in more than one process, the user should define manually which one is the most important in 

terms of the study. This can be done with a shorter list, like in this case study, but having a 

large list of LRIs, it remains challenging. Currently, a potential solution is to create multiple 

plots highlighting each pathway and the related interactions separately. Finally, the annotation 

of receptor proteins is not complete, I used OmniPath including data from CellPhoneDB 111, 

Guide2Pharma (https://guide2pharma.com/), HPMR 330, Gene Ontology 304, and two literature-

derived resources 123,331, hence the analysis can miss potentially important signalling 

pathways. Despite these limitations, the intercellular interaction pipeline gives a new insight 

into context-specific cellular interaction. The scripts and examples are accessible through 

GitHub (https://github.com/korcsmarosgroup/uc_intercell). 

In a case example, I discovered public single-cell transcriptomic data from colon samples 

deriving from healthy and UC patients and selected five cell types representing epithelial, 

stromal and immune cell populations. I pointed out a possible altered cellular communication 

and adhesive structures in non-inflamed UC compared to healthy colon. Ligand-receptor 

interactions and their downstream effect were explored between myofibroblasts and Tregs, 

two cell types that play crucial roles in UC pathogenesis 323,332. 
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Although studying intercellular communication on the systems- level is a relatively new 

approach - due to the requirement of single-cell omic data - there are other methods and 

pipelines which analyse relationships between cells 312,333–335. Smillie et al not only published 

the scRNAseq datasets used in this study but also discovered cell-to-cell interactions in the 

collected samples. My motivation to use the same dataset and carry out a similar analysis was 

to show how OmniPath can provide a potentially more precise insight into physical cell-cell 

interactions and cellular communication. The main focus of the authors was on the rewiring of 

cell-cell interactions through ligand-receptor connections in UC. They used the FANTOM5 

database 123 as a source of LRIs. Additionally, instead of considering all of the expressed 

ligands and receptors they only selected the cell markers and differentially expressed genes 

between conditions. This filtration step resulted in fewer LRIs and more compact networks 

where not every cell was connected to the others. Based on their analysis, in healthy condition, 

DCs and T cells are described as hub nodes in the network, while in non-inflamed UC 

interactions were enriched between epithelial cells and fibroblasts and T cells 312.  

Their results are not contradicting the output of the workflow I presented in this chapter, 

however their methodology highlights cell-cell interactions in a different point of view. By 

limiting the analysis to markers and DEGs, the output focuses on differences at cell type level 

while I explored the rewiring at molecular level. In contrast to their analysis, my workflow (1) 

also explores cell adhesion structures; (2) uses OmniPath as an integrated resource of 

intercellular interactions and protein annotations providing a larger coverage of the known 

LRIs; (3) discovers and assesses the affected pathways downstream in the target cells. 

I compared the five cell types with each other, and found a key difference between the 

intercellular interaction networks deriving from healthy and UC conditions. Based on the 

outcome of the pipeline, cells are tightly connected to DCs in healthy condition, while in UC 

condition this tendency shifts in the direction of regulatory T cells. Because there is no 

experimental validation for these results, the findings are only assumptions. However, this 

hypothesis is not contradictory to the currently available information in the literature: DCs are 

professional antigen-presenting cells that recognise surface molecules on other cells through 

diverse cell-cell interactions, therefore maintaining normal immune response 336; Tregs are 

immunosuppressive in general, however, in IBD patients their phenotype and gene expression 

pattern are altered 323 which potentially lead to more intense communication with other cell 

types in the gut. 
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The analysis indicated a potential increase in ligand-receptor interactions between 

myofibroblast and Treg during UC that caught my attention. Therefore I carried out a 

downstream pathway analysis in Treg that showed overrepresented MAPK and TLR signalling 

in the disease. Based on the literature, the enriched MAPK signalling pathway plays a key role 

in the immunosuppressive function of induced Tregs in healthy conditions 337. The also health-

related TLR2 and TLR7 pathways facilitate the maintenance of Th17 (pro-inflammatory T cell 

subpopulation) and Treg balance and increase the immune suppression function of Treg 338,339. 

In contrast, in non-inflamed UC, the overrepresented TLR4 and TLR3 pathways contribute to 

inflammatory cytokine expression 340–342. This evidence supports the fact that in healthy 

condition, regulatory T cells protect against inflammation, while in non-inflamed UC this starts 

to deteriorate partially by the myofibroblasts.  

The pipeline gives a detailed insight into the rewired intercellular interactions during 

inflammation, but some limitations need to be improved in the future. Most importantly, the 

analysis relies on data coming from OmniPath. Although the resource includes the major 

molecular databases (such as IntAct, BioGrid) and keeps them updated, the results rely on the 

available interactions and intercellular annotations. Besides, the workflow handles 

transcriptomic datasets, which give gene expression information, while the inter- and 

intracellular networks describe connections between proteins. I assumed all genes expressed 

translate to proteins. Also, the case study and its conclusions are based on one scRNAseq 

dataset, but the 10X approach could miss some potentially expressed genes. Hence, the 

finding that there is a weaker communication between cells in UC could be deceptive due to 

the lower read depth in single-cell sequencing 194. Besides the biases in the data analysis, 

conclusions about the type of intercellular interactions can be misleading. Usually, databases 

provide information about ligand-receptor and adhesive interactions, less interactions describe 

tight junctions, gap junctions, desmosomes and ion channels. I tried to overcome this limitation 

by focusing on the altered ratio and differences between ligand-receptor and adhesive 

interactions and ignoring small interaction categories. 

In conclusion, we established an integrated resource, called OmniPath, in a collaborative 

project with the Saez group that details inter- and intracellular interactions collected from 

more than 100 sources. I built a computational workflow combining OmniPath with public 

omic data to address gaps in the current knowledge about context-specific cellular 

communication. My colleagues are now teaching the use of my workflow to the future 

generations of systems biologists in training courses at the EMBL European Bioinformatics 

Institute.  



 

74 

Chapter 3: Discovering the effect of the human 

microbiome on host cell signalling 

3.1 Introduction 

Systems microbiology uses analyses of omics data to understand the interactions between 

microbial cells or communities and their host. During the evolution of host-microbe interactions, 

three main directions have emerged: infection, colonisation and commensalism. Infection 

describes a process when pathogenic microbes enter the host and start to replicate potentially 

leading to diseases 343. Colonisation describes the presence of microbes in the host without 

causing damage or disease 344. The term ‘commensalism’ has been used in literature to define 

multiple processes, such as ‘The ability (of a microorganism) to live on the external or internal 

surfaces of the body without causing disease’ 345. The current terminology says that 

commensal bacteria do not induce damage after colonising the host however they can elicit 

an immune response 346. When both the microbes and the host benefit from the interaction the 

connection is mutualistic. However, depending on the environment (e.g impaired immune 

activity or altered microbiome), commensal bacteria can turn into pathogens causing damage 

and potentially disease in the host 346,347. 

Rewired host-microbe interactions can lead to disease in the host. Hence, understanding the 

detailed cellular communication between the microbes and the host has become a significant 

research area. While earlier studies focused on the role of single microbial strains in disease 
348 in the last decades, the integration of systems biology approaches [details in Chapter 1] 

drastically improved the host-microbe interaction detection methods. Techniques have been 

shifted from in vivo / in vitro experiments toward in silico predictions. Chapter 1 describes the 

experimental approaches shortly, Table 3.1 summarises the major types of in silico algorithms 

with examples. 
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Table 3.1: In silico PPI prediction approaches 

Method Description Resources/tools 

Orthology-based approaches Orthologous proteins share similar 
sequences, therefore, an experimentally 
found PPI can be predicted in another 
organism using sequence alignment  

POINT349–

354,pathDIP 350, 
IsoBase 351, 
InParanoid 352, IID 
353, Singh et al 354  

Gene expression profile based 
approaches 

Genes belonging to the common 
expression-profiling clusters are more likely 
to interact with each other 267  

Enright et al 355 

Phylogenetic profile-based 
approaches 

Inferring PPIs based on the evolutionary 
history of proteins 267 

COG 356 

Domain-domain interaction-
based approaches (Structural 
composition-based prediction) 

The general assumption is that domainA 
binds to domainB, then proteinA carrying 
domainA interacts with proteinB having 
domainB 357 

PPIDomainMiner 358 

Domain-motif interaction-based 
approaches (Structural 
composition-based prediction) 

Similarly to DDI, the known interaction 
between structural components is used to 
infer connections between proteins. 
Further details in Chapter 2. 

LMPID 359,360 

Machine learning algorithms Machine learning combines several protein 
features (e.g. amino acid composition, 
hydrophobicity profile) to predict the 
probability of the interaction. It requires 
true-positive and true-negative interactions 
for the training used to train the algorithm. 
It is currently the most powerful approach 
for PPI prediction 200.  

InterSPPI 361 

Revealing cross-species interactions is challenging due to obtaining multi-omic datasets from 

the same sample 362, therefore there is a need for computational pipelines to overcome this 

problem. In silico algorithms attempt to predict interactions between molecules at a systems 

level. There are several approaches, a common characteristic is that all of them look for 

similarities between molecules and interactions (e.g. similar sequences, expression patterns, 

structural composition or evolutionary history) 363. 

The thesis focuses on detecting host-microbe PPIs, but microbes interact with the host through 

metabolite- and RNA-mediated interactions as well. . The following paragraph details the 

structural-based domain-motif interaction (DMI) -based PPI detection method. 
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Proteins do not have a simple linear shape, these macromolecules are organised in complex 

3D structures. Knowledge about structural properties can improve the PPI networks 364. 

Primary structure describes the proteins on the amino acid (AA) level. Short linear motifs 

(SLiM) are short amino acid sequences (3-20 Aas) containing conserved positions. Secondary 

protein structure (e.g alpha-helices and beta-pleated sheets) highlights smaller organised parts 

of the molecules, while the tertiary structure is a 3D construction that is folded into functional 

units, called domains 365. Regarding the tertiary structure of the proteins, globular and fibrous 

constructions can be distinguished. Fibrous proteins are long-shaped molecules consisting of 

repetitive amino acid sequences that are less sensitive to changes in the environment, such 

as pH or temperature. Usually, these proteins have a structural role (e.g. actin or collagen). 

Globular proteins are more compact and built up from irregular amino acid sequences. In 

contrast to fibrous protein, they have functional roles (e.g. enzymes) 366.  

The irregular amino acid sequence in globular proteins is described as unstructured and 

flexible regions without regular structure 366. These intrinsically disordered regions (IDRs) play 

a pivotal role in the host-microbe interactions. IDRs are determined based on the primary 

protein sequence composition by identifying parameters, such as disorder-promoting 

hydrophilic features and charged amino acids. Most of the prediction tools use machine 

learning algorithms to combine these features and determine potential IDRs 367–373. 

SliMs on IDRs provide binding sites for domains and the established PPI plays an important 

role in signalling pathways 374. Currently, resources describing DMIs or even SliMs are limited. 

Eukaryotic Linear Motif (ELM) resource 375, Linear Motif mediated Protein Interaction Database 

(LMPID) 359, interActions of 76ocatio domAiNs (ADAN) 360, and the database of three-

dimensional interacting domains (3did) 376 provide structural and interaction-related 

information. 

There are existing studies and methods which use DMIs to infer PPI, all of them are based on 

structural information derived from the ELM and/or 3did resources. Zhang et al discovered 

DMI-based PPIs between grass carp and grass carp reovirus 377; Halehalli and Nagarajaram 

established a workflow to study viral-human PPIs 378; Evans et al discovered human – HIV 

PPIs and I was also contributing to a study to reveal PPIs between bacterial pathogens and 

human autophagy proteins 379. 

All of these studies focus on discovering various types of host-microbe interactions, however 

they lack details regarding the tissue/cell and condition specificity of those interactions. The 

workflow, presented in this chapter, aims to address this limitation and fill this crucial 
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knowledge gap in the field. It combines structural in silico PPI detection methods with host 

omics data analysis and predicts the effect of extracellular microbes on host signalling 

pathways in tissue- and cell type-specific ways. Moreover, I reconstructed tissue/cell type-

specific intracellular signalling to analyse the downstream signalling effects of the microbes. In 

addition, completing the network modelling with functional analysis gives an overview of the 

potential changes in the signalling flow and cross-talks between pathways due to diverse host-

microbe interactions. 

3.2 Methods  

The original host-microbe interaction pipeline has been published as ‘MicrobioLink’ in 2020 380. 

However, during my PhD, I started to work on a newer version, called MicrobioLink2. In the 

following sections, I would like to introduce the existing workflow and highlight the 

improvements in MicrobioLink2. A detailed description of the practical application of the 

algorithm, as well as information on its ease of use and input requirements are described in 

Chapter 4 and Chapter 5. 

As the pipeline potentially will be used for commercial purposes by the industrial partner, I 

checked the licences for the tools used in the pipeline [Figure 3.1]. In the project, I did not use 

any resource which was not been updated in the last 10 years or the website was not available 
381–385. 

 
Figure 3.1: Workflow of host-microbe interaction prediction. Pre-processing of host and microbial 
proteins (highlighted by transparent colours) is not included in the pipeline. Resources with green 
background: no restriction for commercial use. Yellow background: some resources require a licence 
for commercial users. Red background: commercial use requires a licence. 
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3.2.1 Location analysis of proteins 

The pipeline focuses on extracellular bacteria that interact with the host cell membranes and 

mediate their effect through ligand-receptor interactions or disrupting the cell adhesion 

structures 386,387. Hence, secreted and membrane-based proteins are essential for bacteria to 

contact and communicate with the membrane-based host proteins 388. I implemented a 

subcellular location analysis of microbial and host proteins into the workflow, however, it is an 

optional filtration step for bacteria due to the low number of the microbial proteins with known 

or predicted annotation. 

Microbial proteins 

I used the PSORTb computational tool (v.3.0.3) for the subcellular location analysis of bacterial 

proteins. PSORTb is available both online (https://www.psort.org/psortb/) and as a Docker 

container 389. To avoid the installation of docker service by the users, in MicrobioLink2, I built 

in the original data from the database into the pipeline which contains microbial proteins and 

their predicted subcellular location scores 390. Depending on the type of the analysis, using 

microbial locations is optional in the pipeline. PSORTb is licensed by the GNU General Public 

License v2.0 and is available for everyone both in academia and industry. 

Due to the different membrane structures of bacteria, the prediction is different in Gram-

positive bacteria, where the microbe has a thin inner plasma membrane and an outer thicker 

peptidoglycan cell wall compared to Gram-negative strains which have a thin plasma 

membrane, peptidoglycan layer and an outer membrane. Depending on the membrane 

structure, the locations can be cytoplasm, cytoplasmic membrane, periplasm, outer 

membrane/cell wall and extracellular space 390. 

The location prediction algorithm of PSORTb consists of multi-analytical modules including 

SCL-BLAST & SCL-BLASTe, Support Vector Machines (SVMs), Motif & Profile Analysis, Outer 

Membrane Motif Analysis, ModHMM, and analysis of signal peptides. SubCellular Localization 

BLAST reveals the homolog of proteins with known subcellular locations using Blast-P search 
391 (comparing a protein query to SCI-BLAST database). Support Vector Machine Modules are 

machine learning-based methodologies which help the algorithm to assign proteins to locations 

based on positive and negative training sets [see Chapter 1.7.2 for more details]. Motifs 

analysis is based on specific motifs which determine the location of proteins in the cells. Gram-

negative bacteria have unique beta-barrel proteins in their outer membranes. PSORTb 
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collected over 250 motifs which characterise these structures and therefore decides whether 

the query protein is part of the outer membrane structure or not. ModHMM identifies 

transmembrane proteins by the hidden-Markov model (a statistical method to predict the 

sequence of unknown variables based on a set of observed features). Finally, signal peptides 

are a specific part of the protein sequence which determine the subcellular 79ocationn of the 

protein 390.  

PSORTb uses RefSeq IDs in the prediction files, therefore I implemented an ID translation 

script, which maps RefSeq to UniProt ID. Also, the script downloads the corresponding protein 

sequence for the RefSeq ID. As an input, the user should provide a table including the 

organism ID of the bacteria of interest and its Gram-state for prediction. The output of this step 

is a list of membrane-based or secreted microbial proteins annotated with strains in which 

these molecules are expressed. Although this step is optional in the pipeline, it can give a more 

focused interactome between the microbiome and human tissues/cells. 

Human proteins 

Subcellular location of human proteins derived from OmniPath (https://omnipathdb.org/) which 

is a curated, regularly updated resource merging the main molecular databases in the field 

[details in Chapter 3]. OmniPath collects information from many resources including Gene 

Ontology DB 304, UniProt 274, Human Protein Atlas 314, LOCATE 315, ComPPI 316 and a literature 

collection 123 (more details about the script collecting location information can be found here: 

https://github.com/saezlab/pypath/blob/3820c3a28c13ce701f1d2b5f9ac6e00834c757da/pypa

th/core/intercell_annot.py). To download plasma membrane proteins I implemented an R script 

using the OmniPathR package 107.  

3.2.2 Host-microbe protein-protein interactions 

In Microbiolink2, I modified an existing DMI-based PPI prediction algorithm from the previous 

version that connects bacterial domains to SliMs on human protein sequences and it reduces 

the number of false-positive PPIs through IDR prediction on host binding sites.  

The knowledge of the existing bacterial domain structures was limited 392 till 2021 when 

AlphaFold2 was published 393. This artificial intelligence-based method exploded the field of 

structural biology by predicting more than 200 million protein structures, including bacterial 

proteins. The current version of MicrobioLink uses InterPro 394 for structural analysis, which 
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provides an automated sequence analytical program for domain prediction called InterProScan 
395. It includes several protein signature recognition methods to identify Pfam domains based 

on the FASTA sequence. SLiMs derived from the ELM database 396, to avoid too general 

motifs, only SLiMs with a length greater than two amino acids were used in the analysis.  

Bacterial domains are able to bind SLiMs on the target protein sequence. The idea behind the 

DMI algorithm is that proteins that carry these structural components are able to establish 

directed PPI networks where the source is the bacterial protein and the target is the human 

protein. 

The first version of MicrobioLink used experimentally verified domain-motif interactions from 

the ELM database (data from 2013). In the new MicrobioLink2 pipeline, I updated ELM (data 

from 2021) and also added 3did 376 to the resources [Figure 3.2]. ADAN 360 was not updated 

since 2009 therefore I did not use it for predicting PPIs. Although LMPID 359 was published in 

2015, the database does not contain Pfam IDs and regular expressions for motifs, therefore I 

did not implement it into the workflow. Merging databases is challenging because resources 

use a diverse set of IDs to describe interactions, hence the first step is mapping them to a 

common identifier. In MicrobioLink2, the motifs are represented by regular expressions and 

the domains are described by Pfam IDs. 

Analysing motifs allows the implementation of a quality control step into the pipeline that 

reduces the number of false-positive interactions in the networks. Among the available IDR 

prediction tools, I chose IUPRED, because originally, MicrobioLink uses this tool (version 1). 

The algorithm discarded those motifs which appeared out of disordered regions because these 

parts of the proteins are rigid and there is less chance that they can be caught by domains 373. 

The tool uses scores based on two methods (IUPred and ANCHOR2) to measure residue-

level energy terms. The energy terms correlate with how intrinsically disordered the protein 

region is. Higher disordered regions are more accessible for the bacterial domain. Two cut-off 

values (IUPred > 0.5 and ANCHOR2 > 0.4 - defined in the source article) were set up to select 

human motifs which are presented out of globular domains and at an intrinsically disordered 

protein region 373. Both IUPred and ANCHOR2 scores represent the probability of a given 

residue being part of a disordered binding region, but ANCHOR2 provides two additional 

methods to estimate the energy associated with interaction with a globular protein 373. 
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Here, I was working on the integration of IUPRED (version 2) into the pipeline. The tool requires 

as input the result of the DMI-based PPI interaction list and gives back a score describing how 

many AAs are on a disordered region. It accepts those motifs as ‘disordered motifs’ where a 

maximum of one amino acid is out of the IDR. Consequently, the output of the analysis gives 

back a reduced list of PPIs between bacterial domains and human motifs. 

3.2.3 Network propagation algorithms 

I discovered two different network propagation approaches in detail during my PhD. Both 

CARNIVAL 258 and TieDie 250 implement causal network approaches to model the signal flow 

between the bacteria-affected human proteins and genes from host transcriptomics datasets. 

However, there are differences in the tools regarding the diffusional algorithm, input data and 

the focus of the algorithms. 

CARNIVAL (CAusal Reasoning pipeline for Network identification using Integer VALue 

programming) is available as an R package. It requires several input files including the start 

point where the signal comes from (triggered receptor in the case of the pipeline), endpoints 

of the signal (differentially expressed genes (DEGs)) and a directed signalling network which 

came from the OmniPath database 397. CARNIVAL provides a subnetwork which reflects the 

transcriptional footprint of samples. CARNIVAL uses DoRoThEA 398 and VIPER 399 to directly 

predict transcription factor (TF) activity from the gene expression dataset, as it skips the 

additional interaction step between regulatory TF - target gene (TG) in the signalling network.  

DoRoThEA is a source of TF - TG interaction, these regulatory interactions come from (1) the 

literature, (2) ChIP-seq experiments, (3) TF binding motif predictions and (4) inference from 

gene expression data. It consists of five categories based on the reliability of the interaction: 

Category A (highest confidence) includes interactions from at least two literature curated 

resources or described in one study but proved by the previously mentioned (2)-(4) methods. 

Category B involves interactions supported by a curated resource AND ChIP-seq data; or 

detected by methods (1), (3), (4); or detected by methods (2), (3), (4). Category C contains 

interactions either from curated resources AND TF binding motif prediction; or from ChIP-seq 

data AND TF binding motif prediction. Category D involves interactions deriving from one 

curated resource or from ChIP-seq data. Category E (least reliable) describes interactions from 

method (3) or (4). I used TF - TG interactions with the confidence score A, B or C in the analysis 

to create a focused, more reliable signalling network. 
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The VIPER package calculates TF activity using DEG fold change values from the host omics 

dataset and regulatory interactions from DoRoThEA. It ranks the TFs based on their activity 

on DEG regulation, and gives only the top 50, as a default setting, to the network diffusion 

algorithm. This means that CARNIVAL builds up causal networks that highlight the altered 

signalling between conditions. 

CARNIVAL uses cplex, software to solve integer linear programming (ILP) problems, for causal 

reasoning to integrate information from TF and signalling pathway activity scoring. Cplex is 

free for students and academic workers however for commercial purposes researchers have 

to pay for the program and therefore can not be included in the public workflow. There are 

alternatives of cplex, like Gurobi (https://www.gurobi.com/) and CBC-COIN 

(https://github.com/coin-or/Cbc) solvers or lpSolve (http://lpsolve.sourceforge.net/5.5/) as 

network optimisers. Gurobi requires a licence for using it in industrial research, CBC-COIN is 

freely available for everyone, but its performance is much lower compared to the previous two 

algorithms. lpSolve is an R package and could replace cplex but only for small networks due 

to the time-consuming analysis. 

A limitation for CARNIVAL is that in most cases describing the shortest path does not give a 

realistic insight into the signalling, also, it relies on the prior annotated pathways. However, it 

provides a more compact network to analyse the transcriptional footprint of samples and 

highlights the key differences between conditions (e.g. healthy vs. diseased) by analysing 

DEGs. 

TieDIE (Tied Diffusion through Interacting Events) describes a sub-network from general 

signalling networks focusing on the signal transduction between the perturbation point and the 

expressed genes (not necessarily DEGs) 250. In general, diffusion-based network propagation 

algorithms do not take into account the causal parameters, such as the effect of the 

interactions. TieDIE solved this particular issue by focusing the diffusion process on causally 

coherent parts of the network. Instead of using cplex, TieDIE computed a diffusion kernel 

module generated by scipy (Python package) 400 to explore the flow of the signal in the general 

network. The tool is under the GNU General Public License (GPL) v3.0 and is available for 

everyone both in academia and industry. 

The input files for the tool are similar to CARNIVAL: a list of perturbation points and 

(differentially) expressed genes and a signalling network that connects the start and end points. 

I used the core (literature curated) interactions from OmniPath as a signalling network. These 

PPIs are directed but the effect is not always known. Because TieDie requires this information, 
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I set up the ‘unknown’ effect to ‘stimulatory’ interaction. The reason for that is the ‘inhibitory’ 

effect in TieDie describes perturbation/mutation in the connection between proteins because 

the algorithm itself was developed using cancer cell lines 250. Therefore it is better to consider 

the unknown effect as a positive connection rather than losing them from the networks. 

 
Figure 3.2: Brief comparison of TieDie and CARNIVAL network propagation algorithms. Black 
boxes highlight the microbial protein, and circles reveal the human proteins. Coloured circles are part of 
the downstream signalling subnetwork that mediates the effect of the upstream HMIs. While TieDie 
infers a larger subnetwork, including all possible paths between the bacteria-affected human proteins 
and TFs regulating the expression of genes, CARNIVAL focuses on the shortest path between the 
membrane-based protein and those TFs which drive differences in gene expression comparing the 
conditions. 

3.2.4 Gene enrichment and overrepresentation analysis 

Both CARNIVAL and TieDIE reconstruct signalling networks which give insight into the signal 

transduction in specific tissues or cells also highlighting differences between healthy and 

diseased conditions. Due to the complexity of the networks and the cross-talk of signalling 

pathways, the affected biological functions are not detectable by modelling the downstream 

intracellular signalling itself. I used GSEA (GOrilla) and GSOA (PIANO) tools to interpret the 

output of the network modelling in an unbiased manner.  
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GOrilla is a web-based GO annotation analysis tool (http://cbl-gorilla.cs.technion.ac.il) 

highlighting the overrepresented GO terms among the genes or proteins provided by the user 
401. This approach reveals what processes are affected in the network and also there is a 

possibility to provide background gene sets (complete genome or a customised larger set of 

genes) to reveal the enriched functions compared to the functions in the background set. An 

important note is that the p-value does not include the multiple hypothesis correction on the 

number of tested GO terms.  

PIANO (Platform for Integrated Analysis of Omics data) includes 11 gene set analysis (GSA) 

calculation methods to perform gene set enrichment analysis and visualise results 

interactively. The extended statistical approaches give flexibility to the algorithm, therefore it 

accepts expression values, p-values, t-values and even fold change values as input for the 

GSEA. PIANO ranks the input values based on gene set statistics and gives back a list with 

enriched signalling pathways or other biological processes. The tool is available as an R 

package 402.  

3.3 Results 

Because this chapter describes the development of a novel methodology, the result is the 

pipeline itself. In this section, I would like to provide a user guide describing the inputs and 

outputs for MicrobioLink2 and also highlighting the automated and manual steps in the 

workflow.  

I implemented two versions of the workflow depending on its usage: (1) for people in academia 

the whole pipeline is available, (2) for commercialising purposes a licence is required from 

EMBL, which institute provides the ELM database; besides a limited number of interactions 

and annotations can be used from OmniPath (35 686 interactions instead of the 40 014 PPIs 

that are in the academic version) and the quality control step left out due to the lack of industrial 

licence from IUPred. 
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3.3.1 Host-microbe interactome 

The in silico host-microbe interaction prediction is a semi-automated workflow written in 

Python. The input files are separated into user-provided and hard-coded files. The user has to 

upload the following inputs: (1) a list of bacterial proteins or UniProt Proteome IDs, (2) a list of 

host genes/proteins of interest or a processed host transcriptomic/proteomic dataset where 

the required format is either a list of genes/proteins or a matrix describing the 

expression/abundance of the molecules. Compared to MicrobioLink which accepts bulk 

transcriptomics, the new version is able to handle single-cell transcriptomics data as well.  

The DMI table and the SLiM patterns derive from ELM and 3did, also resources for the IDR 

prediction by IUPred are provided and implemented in the script because these standard files 

are part of the DMI-based PPI prediction algorithm and the quality control afterwards. 

MicrobioLink includes 258 DMIs from ELM (data from 2013). However, the latest version of the 

interactions describes 354 interactions, I updated it in MicrobioLink2. The new table not only 

expanded the list of interactions but also removed 13 DMIs due to motif ID changes, therefore 

the new pipeline describes connections with the most updated Pfam and ELM motif IDs. Also, 

the new pipeline includes extra 985 interactions derived from the 3did database. Interestingly, 

there was no overlap between ELM and 3did in terms of the motif regular expressions resulting 

in a lack of common DMIs. 

The bottleneck of this analysis is the number of described domains that have known target 

motifs. MicrobioLink includes 114 domains while MicrobioLink2 contains 277 domains [Figure 

3.3]. 
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Figure 3.3: Comparison of motif targeting domains between ELM (old version - ELM (2013) - in 
MicrobioLink and the new one - ELM (2021) - in MicrobioLink2) and 3did. 

Firstly, the script downloads the domain structure of bacterial proteins and the .FASTA 

sequence file of human membrane proteins. If there is an available metaproteomic dataset that 

describes protein abundance in the microbial community it can be used directly for the pipeline. 

However, in the lack of metadata, the algorithm accepts a list of UniProt Proteome IDs and 

downloads the whole proteome from the database. In this case, the input file consists of two 

columns, one with the bacteria strain and the other one with the proteome ID. Also, there is a 

possibility to analyse another condition (e.g. diseased microbial community) in parallel. The 

script accepts an optional parameter, the column that describes the proteome ID of the bacteria 

strains in the other condition. There is an opportunity to assign a location for bacterial proteins 

or even filter the dataset based on subcellular location to avoid the large host-microbe 

interactome. However, this step is not part of the core workflow, it should be run separately. 
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Regarding the host side, there is a need for processed transcriptomic or proteomic datasets. 

The required format is an average gene count or protein abundance matrix that includes the 

description of genes (by gene symbols) or proteins (by UniProt IDs) in rows, the cell or tissue 

type with the condition in columns and the average expression or abundance value in the cells. 

The algorithm downloads only the sequences of the potential membrane-based proteins 

filtered by annotations in OmniPath.  

The inputs are ready for the interaction prediction (and the quality control in the academic 

version). IUPred is not available for commercialising purposes, therefore it is available in a 

separate script. The output of the prediction is a table describing details about host-microbe 

interactions including the interacting proteins (UniProt IDs), the interacting bacterial domain 

(Pfam ID) and human motif (exact position in the protein sequence and its length) pairs. This 

interaction table can be used as an input for Cytoscape to visualise the interactome manually.  

3.3.2 Network diffusion modelling 

The second part of the analysis consists of another semi-automated workflow implemented in 

R and Python that constructs the downstream intracellular network. Although the heat 

propagation algorithms use different methods to build up downstream signalling network, their 

input files are similar: (1) list of perturbation points (bacteria targeted human proteins from the 

prediction), (2) endpoint for the signal spread (TFs), (3) contextualised regulatory interactions 

from DoRoThEA, (4) (differentially) expressed genes, (5) contextualised PPI network with 

directed edges. By contextualised data, I mean interactions between expressed 

genes/proteins from the input host transcriptomics/proteomics dataset. 

Using CARNIVAL the most important output is the final network visualised by GraphViz 403, 

besides it creates files for each network model created by cplex. In contrast, TieDie makes a 

report.txt file about network statistics and a summary of the analysis. Also, it gives information 

about the interactions and about the heat of each node which parameter quantitatively 

describes the strength of the signal spread through the downstream proteins. For further 

visualisation, the interaction and node annotation files can be imported into Cytoscape.  
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3.3.3 Functional analysis 

For the gene set enrichment analysis (GSEA), users should provide two gene sets to analyse 

the statistical significance of the overrepresented pathways. Using CARNIVAL automatically 

results in GSEA by PIANO. However, for the TieDie output network, I inserted a manual 

functional analysis by GOrilla tool to extend the scope of GSEA tools. Here, the observed gene 

set includes the nodes that appear in the output networks from TieDie, and the background 

gene set contains all the genes in the whole contextualised PPI network. 

3.4 Discussion 

I have developed an in silico host-microbe interaction prediction method to analyse the direct 

effect of microbes on host cells and tissues by inferring a host-microbe PPI network and 

exploring the indirect effect of bacteria on the downstream signalling pathways using 

transcriptomic data from the host. 

The workflow is based on our previously published MicrobioLink pipeline 380 however I modified 

several parts of the tool and established MicrobioLink2. I updated databases involved in the 

previous version and also contributed to the development of OmniPath database which 

increased the reliability of the output data [details in Chapter 2]. There are three novelties of 

the work presented in this chapter. Firstly, the workflow is able to handle UniProt Proteome 

IDs and gain all proteins automatically instead of requiring a list of microbial proteins. Secondly, 

I included CARNIVAL as a network propagation method - complementing TieDIE - to have an 

insight into the transcriptional footprint of the data as an effect of microbes by inferring the 

shortest path between the bacteria-affected receptors and the differentially expressed genes 

in tissues or cells. Finally, not only bulk but single-cell data can be also used as input host 

transcriptomic profile for the workflow.  

This study is a gap-filling approach among plenty of host-microbe interaction prediction 

resources. While most of them 404,405 focus on the functional relevance of microbes on host 

tissues or focus on one specific microbe, here, I propose a computational tool to explore HMIs 

(where the domain structure is available) on molecular level including the advantage of 

following the signal from the triggered receptors down to the transcriptional changes in the 

host. Also, including single-cell transcriptomics offers a new perspective for HMI analysis and 

establishes the cell and condition-specific analysis of microbes on host signalling. 
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The thesis presents two use case examples of the workflow: Chapter 4 explores the cell and 

condition specificity of the gut commensal Bacteroides thetaiotaomicron in healthy intestine 

and during ulcerative colitis focusing on immune cells. Chapter 5 presents a use case of the 

pipeline by analysing the effect of the disrupted microbiome on epithelial cells in the oral cavity 

during periodontitis.  

The pipeline includes several limitations. Predicting bacterial-human PPIs is challenging due 

to the lack of knowledge regarding the motifs bound by bacterial domains. Using the ELM and 

3did databases limits the results to those domains which occur in Eukaryotes and misses the 

bacteria-specific tertiary structures. This gap could be addressed by using protein structures 

from the AlphaFold2 (AF2) resource. AF2 is a software that predicts the 3D structure of a 

protein based on its amino acid sequence using deep learning and sophisticated algorithms 
393. By utilising the tool that deduces the structure of proteins from bacteria, we can expand the 

list of potential domains present in these proteins, thereby improving the precision of our 

predictions regarding the interactions between the host and microbe. Also, the effect (activator 

or inhibitor) of bacterial proteins is unknown on host proteins. These restrictions can be solved 

by integrating manually curated information about bacterial domain-binding motif connections 

into the HMI prediction. Another issue is that I assume every transcript, expressed in 

transcriptomics, translates to functional protein which is not true. Post-transcriptional and post-

translational modifications affect the mature RNA structure and the translated protein activity. 

Analysing proteomics and transcriptomics from the same samples could improve the model. 

Finally, I would like to include other pathway finding methods in the downstream analysis like 

the Prize-collecting Steiner Forest (PCSF) algorithm to include genes/proteins missed by the 

detection platform [details in Chapter 1.7.1]. 

In the future, I plan to upgrade the current methodology by integrating bacterial metabolite-

protein interactions into the model and analysing the effect of small molecules on host 

signalling. Also, I would like to connect the bacterial metabolite-affected human receptors to 

the human metabolic network (e.g Recon3D 406) to map which host metabolic pathways are 

affected and how the host metabolite secretion is differing under a disordered condition. 

Discovering the effect of the altered microbial metabolites in dysbiotic communities on host 

processes could provide a complementary, host systems biology interpretation to the existing 

community modelling efforts.  
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Chapter 4: Analysing the cell-type specific effect of 

bacterial outer membrane vesicles on the immune 

system 

4.1 Introduction 

The gut microbiome has been linked to a variety of health conditions, research suggests that 

an imbalance in the gut microbiome, called dysbiosis, may contribute to the development of 

certain diseases such as IBD 407. However, it is challenging to describe the IBD-associated 

microbiome because the composition differs person by person. In IBD patients the intestinal 

tract is colonised by a reduced number of Firmicutes species and there is an increase in 

Bacteroidetes 408, Proteobacteria and Actinobacteria species 409. Studies show a lower level 

and taxon diversity of Bacteroides in UC patients compared to a control group 407,410.  

The Bacteroides taxon is one of the most common groups of bacteria in the intestine (with 25-

50% average abundance) 411,412. Interestingly, some of these Gram-negative anaerobic 

microbes are able to act as commensals in the intestine, however others, outside the gut, can 

be harmful pathogens (e.g. Bacteroides fragilis, Bacteroides thetaiotaomicron) 413. This 

commensal - pathogen conversion is due to a typical large genome of the members of the 

Bacteroides taxon. These species can easily turn on and turn off a couple of genes (mainly 

metabolic pathway-related ones) to adapt to the actual environments 414. Bacteria in the 

Bacteroides taxon produce extracellular vesicles that are known to play key roles in 

intercellular communication 415,416. In particular, bacterial extracellular vesicles (BEVs) are 20–

500 nm-sized and have spherically bilayered structures. BEVs are released by intestinal 

bacteria into the gut lumen to mediate cross-kingdom interactions with host cells resulting in 

modulation of host signalling pathways 417. BEVs produced by Gram-negative bacteria are 

mainly composed of phospholipids, lipopolysaccharides (LPS), peptidoglycan, outer 

membrane proteins and periplasmic content and also include some inner membrane and 

cytoplasmic fractions 415. 
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The LPS structure of Bacteroides shows unique parts compared to other bacteria (e.g. 

Escherichia coli) 418 that causes a taxon-specific immune response in the host. A modified 

structure of LPS, called lipooligosaccharide (LOS), has penta-acylated and 

monophosphorylated lipid A that does not promote pro-inflammatory responses in immune 

cells 419,420. 

Bacteroides thetaiotaomicron (Bt) is a prominent Gram-negative anaerobe in the Bacteroides 

taxon residing in the caecum and colon of most or all animals. Bt BEVs can access and 

transmigrate across boundary epithelial cells using different routes 421, interact and modulate 

the mucosal immune system and disseminate more widely via the bloodstream 422–426.  

Bt is one of the potential next-generation probiotics 427. To restore dysbiosis in the gut, 

researchers analyse the effect of probiotics as a potential treatment for diseases 428–432. 

Probiotics are living bacteria promoting health benefits that are able to repair the disrupted 

mucosal layer and restore the bacterial equilibrium state 432. As an essential gut symbiont, Bt 

has a well-studied anti-inflammatory effect in the gut 433–435 affecting both epithelial cells 

(causing increased goblet cell differentiation 434) and immune cells (e.g DCs, T cells 425). Bt is 

able to selectively antagonise transcription factor NF-kappaB in the host cells, therefore 

decreasing the secretion of IL-8, TNF-α, and IL-1β and attenuating inflammation 433. Studies 

on DSS-induced colitis in mice showed the relevance of Bt in IBD. Bt strongly induces the 

maturation of the colon immune system including Treg pathway activation reducing Th1, Th2 

and Th17 cytokines and increasing the expression of IL-10, TGFβ and PDCD1 genes 436. 

In this chapter, I present how I used the established host-microbe interaction workflow [detailed 

in Chapter 3] to explore the role of BEVs derived from the gut commensal Bt on immune cells 

in healthy and UC colon. The following case study was published in Journal of Extracellular 

Vesicles 437. 
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4.2 Methods 

The project consists of wet lab experiments - carried out by Simon Carding’s group at the 

Quadram Institute - and computational data analysis by Matthew Madgwick and myself [Figure 

4.1]. The isolation, purification and proteomic analysis of Bt BEVs were performed by Regis 

Stentz (QIB). Imaging was done by Catherine Booth (QIB). Sonia Fonseca (QIB) was 

responsible for the experimental verification of in silico findings. Processing of raw single-cell 

data was carried out by Matthew Madgwick. All the other computational analyses and 

interpretations were executed by myself. 

 

 
Figure 4.1: Computational workflow to analyse cell-type specific effects of BEVs. Numbers 
indicate the sequence of the main steps: 1, Extraction of BEV proteins from the proteomic dataset 2, 
Identification of bacterial domains using the Pfam database 3, Processing the raw single-cell 
transcriptomics from human colon 4, Creating cell type-specific networks using PPIs from OmniPath 107 
5, Identification of SLiMs on human proteins using the ELM database 6, Predicting protein-protein 
interactions (PPIs) between BEV and host proteins in each cell-type separately by MicrobioLink2 7, 
Reconstruction of Toll-like receptor pathway using Reactome database 297 8, Combining cell-specific 
signalling with BEV targeted human proteins. 
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4.2.1 Experimental analysis of BEV proteins 

Regis Stentz and Sonia Fonseca were working on the experiments that resulted in a list of 

BEV proteins that I used as an input for the MicrobioLink2 pipeline. The experimental protocol 

consisted of the following steps: isolations and characterisation of Bt BEVs, proteomic analysis 

of the vesicles and checking of the structure of BEVs by transmission electron microscopy. 

Details about the experiments can be found in the original article 437. 

4.2.2 Single-cell transcriptomic datasets analysis 

The same public study 312 has been used for the project that has been described in Chapter 2. 

While in that study epithelial, immune and stromal cells were analysed, here, I filtered the data 

for only the following immune cells: cycling monocytes, inflammatory monocytes, 

macrophages, DC1 (healthy mucosa-related subset) and DC2 (inflammation-related subset). 

For these cell populations, I used those that were from healthy or non-inflamed UC conditions. 

Further information about the single-cell data processing is described in Chapter 2. 

4.2.3 Analysis of bulk transcriptomic data 

I processed two public bulk RNAseq datasets to model the effect of Bt BEVs on the THP-1 

monocytes - the cell line that was used for the experimental verification of the in silico results. 

I collected pre-processed datasets from Gene Expression Omnibus (GEO) (GSE132408 and 

GSE157052) that described gene expression in healthy condition. Due to the different 

protocols of the two studies, I normalised the datasets using the DESeq2 R package. Also, 

GSE132408 used gene symbols while GSE157052 described geneIDs, hence I unified them 

to gene symbols using Uniprot ID conversion tool 292, and kept only genes which were detected 

in both experiments. I filtered the expressed genes with the Z-normalisation method (cutoff > -

3) [details in Chapter 2]. 
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4.2.4 Cell-type specific Bt BEV - human interactome 

I explored the effect of BEV proteins on different cell types based on host-microbe PPI 

networks using MicrobioLink2 introduced in Chapter 3. The assumption was that a BEV protein 

can bind to a human protein if a BEV protein domain targets an amino acid motif on the host 

protein based on the ELM database 279. First, I downloaded the sequence of BEV proteins 

detected in the proteomics analysis from the Carding lab and of the human proteins, which 

were translated from genes in the single-cell transcriptomics using the Uniprot database 438. I 

connected the two sets of proteins with the MicrobioLink2 pipeline [details in Chapter 3].  

4.2.5 Functional analysis of Bt BEV protein targets 

I performed gene set overrepresentation analysis by GOrilla 401 to highlight the main functions 

affected by Bt BEVs. The observed input gene set consisted of the Bt BEV targeted human 

proteins while the background set described all expressed genes in the examined cell type 

under healthy or UC condition. An annotation was significantly overrepresented among the Bt 

targets if the p-value was less than 10-3 and the FDR q-value calculated by Benjamini and 

Hochberg method was less than 0.05. The output of the functional analysis describes a list of 

processes affected in each cell type by Bt. Due to the complexity and difficulties in data 

interpretation, I used REVIGO to reduce the dimensionality of the annotations and identify 

significant differences among functions 439. simRel scores were applied to measure the GO 

semantic similarity. To visualise the functional overlap among cell types and conditions, I used 

the InteractiVenn web-based tool 440.  
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4.2.6 Cell-type specific signalling pathway analysis 

The TLR signalling pathway is complex and encompasses nine receptors and numerous 

downstream components. I obtained the pathway members from Reactome 297. I combined the 

host-microbe PPI prediction results with log2 expression values from scRNAseq and bulk 

RNAseq datasets (monocytes, dendritic cells, macrophages, THP-1 cells). This allowed me to 

understand cell type-specific gene expression patterns and their impact on interspecies 

interactions. I calculated the difference in gene expression between two states (expression in 

UC condition – expression in healthy condition), and visualized the results using heatmaps 

created in Python, in order to compare the patterns under varying conditions. 

4.2.7 In vitro validation of in silico findings 

Sonia Fonseca performed the experimental validation; the exact protocol is described in the 

original article 437. Briefly, she handled THP-1 monocytes with NF-kB reporter constructions to 

highlight the activation of the TLR pathway under diverse conditions. The cells were exposed 

to Bt BEVs, E. coli LPS and phosphate-buffered saline (PBS) as a control to explore the effect 

of LPS- and LOS-coated bacterial vesicles on the signalling. The TLR pathway was inhibited 

by CLI-095 (a TLR4 inhibitor) and a TIRAP inhibitor which enabled us to study the TLR4 and 

TIRAP-mediated activation of the TLR pathway. 

4.3 Results 

4.3.1 Reconstructing a BEV - human interactome  

We combined experimental approaches with in silico analysis to reveal the effect of Bt BEV 

proteins on signalling pathways in human cells. Following the isolation and purification of 

BEVs, a proteomic analysis unveiled 2068 proteins in the bacterial vesicles. I analysed single-

cell RNAseq data highlighting the expressed genes in the selected five cell types: cycling 

monocyte, inflammatory monocyte, DC1, DC2 and macrophage. Figure 4.2 shows the 

predicted number of PPIs between the BEV and human proteins. Although RNAseq data 

describes genes, I inferred the protein-protein interaction (PPI) network by assuming that all 

expressed genes were translated into functional proteins. 

 



 

96 

I found 48 BEV proteins which were able to bind target sequences on human proteins. Most 

of them (43 out of 48) were hubs in the network, each contacting hundreds of human proteins 

separately due to their enzymatic nature. These 43 proteins are hydrolases, proteases, and 

other catabolic enzymes without a specific cleavage site. The rest of the five BEV proteins 

interact with a human polymerase. 

Around half of the expressed genes in human cells were potentially able to connect to bacterial 

proteins in every cell type [Figure 4.2]. There was no difference among the interacting bacterial 

proteins, the same 48 proteins were included in the PPI networks in both conditions. However, 

I found human proteins which interacted with the BEVs only in one of the conditions (healthy 

or UC) or in a few cell types. This outstandingly high ratio of host targets shows the need for a 

specific focus on the data instead of analysing the whole interactome. 

 
Figure 4.2: Interactions of 48 BEV proteins with various human cells. Monocytes, macrophages 
and dendritic cells in healthy (a) and UC (b) conditions interacting with BEV proteins. The number of 
expressed genes/number of interacting proteins is highlighted for each cell type. The figure was drawn 
by myself. 
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4.3.2 Functions of the human target proteins 

The described BEV - immune cell interactome highlights which proteins are directly targeted 

by the Bt BEVs, however it does not give information about the affected processes themselves. 

I explored the function of the BEV targets using the GOrilla enrichment analysis tool and then 

compared the differences among the selected immune cells. Around 60% of annotations in all 

the cell types were overlapping between cells related to basic cellular processes, such as 

metabolic pathways and chromatin organisation. Although in a smaller ratio, I found bacteria-

targeted processes appearing in one of the cell types. In inflammatory monocytes, Bt BEV 

proteins affect apoptosis and myeloid cell differentiation, while in cycling monocytes, 

proliferation-related functions were enriched in both conditions. Interestingly, in the healthy 

condition, among the BEV-affected processes in DC1 cells, somatic diversification of immune 

receptors and B cell apoptosis were uniquely over-represented. In contrast, vesicle fusion, 

negative regulation of apoptotic signalling pathways, and the intracellular steroid hormone 

receptor signalling pathway were found as uniquely affected functions in UC. Regarding DC2 

cells, there were only 11 cell-specific annotations in the healthy state that did not relate to 

specific functions, whereas in UC, 35 unique annotations affected the cell cycle. Finally, in 

macrophages, epidermal growth factor (EGF) receptor and regulation of TGFβ receptors were 

involved in the healthy state and RAS protein signal transduction in UC. 

4.3.3 Effect of Bt BEVs on the Toll-like receptor pathway of immune cells 

As introduced in Chapter 1, the TLR pathway is important in regulating inflammatory 

processes. In addition, there are publications that support how Bt affects the TLR pathway 425. 

I explored the impact of the BEV proteins on the TLR pathway in detail to reveal potential 

condition-specific key signalling components. Cell types have different gene expression 

profiles, therefore I have analysed the TLR pathway in diverse cells under healthy and UC 

conditions. 

In general, results show interactions mainly between Bt BEVs and downstream TLR pathway 

members, receptors are less likely to be a target for the bacterial vesicles. The heatmap 

highlights another common feature, the transcription factors did not show a different 

expression pattern between conditions, besides, all of them are potential BEV targets [Figure 

4.3]. I made pairwise comparisons analysing different subpopulations of cell types, such as 

dendritic cells (DC1 vs DC2) and monocytes (cycling vs inflammatory) to identify cell- and 

condition-specific parts of the pathway. 
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Dendritic cells show exciting examples for condition- but also cell type-specificity. DC1, a DC 

subset dominating in healthy condition, includes less active signalling during UC because most 

receptors (TLR1, TLR2, TLR3, TLR7) and many downstream pathway components are 

expressed only in healthy state. Among the condition-specific proteins, 16 BEV protein targets 

suggest a diverse effect of Bt BEVs on the TLR pathway in DC1 cells in healthy condition 

compared to UC. In contrast, in DC2s (inflammation-related DC population) almost the whole 

TLR signalling is equally active between states, including the TLR4 receptor, which was not 

found in the DC1 cells [Figure 4.3]. 

In monocytes, the TLR signalling shows differences between conditions rather than 

subpopulations. Unlike the DCs, here, the inflammatory subtype includes UC-specific (12 

genes) and healthy condition-specific (17 genes) gene expression suggesting signalling 

rewiring. TLR7 and TLR10 trigger signalling in a healthy state, while in non-inflamed UC, TLR4 

and TLR5 can be found uniquely. In cycling monocytes, the signalling is balanced between the 

conditions. 11 genes are expressed condition specifically, although the BEV targeted TLR4 is 

strongly expressed in UC [Figure 4.3]. 

Experimental validation was carried out on monocytes driving from THP-1 cell line, therefore I 

analysed public bulk transcriptomic data to predict BEV - TLR pathway interactions in THP-1 

monocytes. Results overlap with the output of the cycling monocyte scRNAseq data analysis, 

however, here I found more potential BEV-interacting proteins (PELI2-3, IRAK2, DNM1, 

RPS6K2, MAPK11) [Figure 4.4]. 

Macrophages show less condition specificity in terms of TLR pathway member expression. 

MAPK10 and MAPK11 are related to healthy, and PELI2 is related to UC condition, otherwise, 

genes are equally expressed between states [Figure 4.3]. Although the number of expressed 

receptors is the highest in this cell type, only TLR4 is predicted to be targeted by BEV proteins.  
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Figure 4.3: Expression of TLR pathway members in the A, selected five cell types and B, THP-1 
monocytes highlighting the potential BEV targets (red label). Grey colour indicates that the gene is not 
expressed in the cell type based on the processed sc data. The heatmaps were created in Python using 
the seaborn and matplotlib packages. 
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4.3.4 Role of Bt BEV proteins in TIRAP-mediated TLR signalling 

TLR4 has been identified as a potential target for the Bt BEV proteins. TLR4 usually binds LPS 

molecules rather than bacterial proteins 441. However, the interactions I found were related to 

the intracellular TIR domain of TLR4 that could promote the effect of BEV proteins in the 

cytosol. BT_2239 is a carboxyl-terminal protein expressed by Bt carrying three domains (Pfam 

domains from UniProt): a PDZ- and two peptidase S41 family domains. The PDZ domain binds 

to a C-terminal motif (833-839 AAs) on the cytoplasmic TIR domain on TLR4 [Figure 4.4]. 

Although there is no exact information about the binding sites of the S41 peptidases, these 

domains recognise tripeptides at the C-terminal end of proteins 442. I assume that these known 

and supposed interactions could influence the downstream part of the TLR4 pathway. 

Based on the in silico prediction, Bt BEV proteins potentially bind to TIRAP. TIRAP is an 

adaptor protein for TLR2 and TLR4. It is responsible for driving the signal into the Myd88-

dependent direction, which causes pro-inflammatory cytokine secretion (e.g. TNF-a, IL-6). 

Activation of TIRAP results in the induction of MAPK signalling and NF-κB-mediated gene 

transcription 443. The literature describes an altered MYD88-dependent TLR4 pathway due to 

interaction with Bt 444. Also, knock-out of the protein leads to a substantial decrease in TNF-a 

secretion. Surprisingly, the analysis revealed four potential domains expressed by 19 BEV 

proteins which can bind to TIRAP at different target motifs all over the protein sequence [Figure 

4.4]. 
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Figure 4.4: Structural details about A, TLR4 - Bt BEV protein and B, TIRAP - Bt BEV protein 
interactions. The in silico host-microbe PPI prediction revealed an interaction between the PDZ domain 
of a bacterial carboxyl-terminal protease and a motif on the intracellular TIR domain of TLR4. 
Interestingly, the TLR2/4 adaptor TIRAP is bound by four bacterial domains based on the prediction 
characterised by diverse functions. TIR – Toll/interleukin-1 receptor/resistance protein domain; PBD - 
Phosphatidyl-inositol binding domain. The figure was drawn by myself. 

4.3.5 Inhibition of TLR4 signalling pathway diminishes monocyte 
activation by Bt BEVs 

I found TLR4 to be the only receptor predicted to be targeted by BEV proteins in monocytes, 

macrophages and DCs. Coats et al validated the interaction between Bt and TLR4 

experimentally, they found the lipidA component of LOS on Bt triggers different TLR-response 

compared to LPS on E.coli’s surface 445. Sonia Fonseca from the Carding lab examined the 

effect of BEVs on the receptor measured by NF-kB activation in BEV-THP-1 monocyte co-

cultures in the presence or absence of CLI-095. 
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Results show that increasing BEV concentration (3 × 107 - 3 × 109/ml) enhances NF-kB 

activation compared to control with PBS in monocytes. Adding CLI-095 inhibitor results in a 

decrease of the transcription factor activity with the highest level of inhibition (∼37%) seen at 

the lower dose of BEVs (3 × 107). In contrast, applying the inhibitor during the lack of BEVs 

has no significant inhibition (P > 0.05) of NF-kB activation [Figure 4.5]. All in all, the incomplete 

inhibition of NF-kB by the TLR4 inhibitor offers a TLR4-independent effect of BEV proteins on 

NF-kB activation. 

Signalling networks identified BEV-interacting downstream TLR pathway components that 

support the experimental result from TLR4 inhibition. Therefore Sonia repeated the experiment 

and used a TIRAP inhibitor instead this time. Here, she found a significant (P < 0.01) reduction 

of NF-kB activation (37.5%) at 3 × 108 BEVs/ml concentration but no significant effect using 

higher dose of bacterial vesicles [Figure 4.5]. 
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Figure 4.5: Inhibition of TLR4 and TIRAP signalling pathways abrogates THP1-Blue cells 
activation by Bt BEVs. A, Schematic view of the experiment; B, Experimental validation of I. TLR4 - 
BEV and II. TIRAP - BEV interactions. NF-κB activation was assessed using different doses of BEVs in 
5 × 105 THP1-Blue cells/ml in the presence or absence of the TLR4 inhibitor CLI-095 (I.) or TIRAP 
inhibitor (II.) and by measuring absorbance at 620 nm after incubation with the colourimetric assay 
reagent Quanti-Blue.LPS from E. coli was used as a positive control and PBS as a negative control. 
Data are presented as mean ± SD (n = 9). Significant differences were determined by using two-way 
ANOVA followed by Bonferroni's multiple comparison post hoc test. ** (P <  0.01), **** (P <  0.0001). 
Part A was drawn by myself while part B was created by Sonia Fonseca. 
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4.4 Discussion 

In Chapter 4, I have shown a use case example for the host-microbe interaction pipeline 

described in Chapter 3 that reveals the cell type-specific effect of a gut commensal bacteria - 

Bacteroides thetaiotaomicron - upon ulcerative colitis. Due to the recent appearance of single-

cell omics data, there is a lack of knowledge on cell type-specific effects of microbes, especially 

in a diseased condition.  

Here, I was focusing on proteins in bacterial vesicles due to their significant impact on cross-

species interactions 446. As Bt is a potential therapeutic agent in IBD 447, it is important to 

understand how BEV proteins are able to interact with and alter the signalling in the immune 

cells thus controlling inflammatory processes.  

The diverse gene expression profile of immune cells enabled BEV proteins to establish 

immune cell-specific interactions. Hence, I selected cycling monocytes, inflammatory 

monocytes, DC1s, DC2s, and macrophages in both the healthy and the non-inflamed UC colon 

to reveal the differences and the effect of host-microbe interactions. The in silico prediction 

revealed large interspecies interactomes in all five cases. Although the participants differed 

between cell types, I did not find differences among the targeting BEV proteins. The majority 

of the bacterial proteins belong to the diverse groups of catabolic enzymes and establish non-

specific interactions. 

Functional analysis of BEV-targeted human proteins revealed cell type-specific differences, 

such as overrepresented cell division in cycling monocytes in the healthy condition. These 

monocytes circulate in the blood and then migrate and differentiate into macrophages in 

various tissues. For a homeostatic state, it is necessary to maintain a pool of macrophages by 

proliferating cycling monocytes 448. In contrast, during UC, DNA repair is strongly affected in 

the same cell type. Here, the literature supports the fact that a higher level of oxidative DNA 

damage characterises the mucosal layer during a severe UC 449–453. Therefore this finding 

promotes that Bt BEV proteins can potentially affect DNA repair thus contributing to the 

treatment of the disease.  

Inflammatory monocytes dominate during an inflamed condition, however, they are 

represented in the healthy colon as well but in a reduced amount. Here I found that BEV 

proteins are likely to connect to proteins that are involved in apoptotic processes regardless of 

the condition.  
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Interestingly, in DC1 cells the somatic diversification of the immune cell receptors is affected 

by the bacterial proteins. This process increases the specificity of these proteins, such as 

TLRs, recognising a wider range of molecular patterns 454. In UC, however, proteins 

responsible for vesicular transport are targeted dominantly by Bt BEV proteins. DCs secrete 

many kinds of cytokines, therefore altered vesicular transport can lead potentially to 

inflammation and modulation of the immune system 455.  

EGF signalling plays a key role in macrophage activation, which cells are essential to control 

inflammation. In healthy condition, BT BEV proteins target some members of the pathway, 

therefore, leading to a potential change in the output in the cells 456. Analysing bacterial targets 

in diseased samples revealed an enriching effect on Ras-mediated signalling. Although I have 

not found relevant information about the role of Ras in gut macrophages, a study highlighted 

that Ras forces macrophages to pro-inflammatory cytokine production, therefore, contributing 

to breast cancer 457.  

The TLR pathway plays an important role in bacteria recognition, including Bt 458–460, however 

the exact molecular background and cell type specificity are less studied. The current analysis 

contextualised the pathway in five cell types, and offered potential key signalling points that 

differ between cells or conditions. I could identify only the TLR4 receptor on the cell surface 

interacting with Bt proteins. Other target proteins in the TLR pathway are part of the 

downstream signalling network in the cytosol that assumes the intracellular presence of BEVs. 

The intracellular uptake of BEVs has been supported by the literature as well 421. The TLR4 

receptor shows cell type and condition-specific expression based on the analysis. TLR4 is not 

expressed in DC1 cells and healthy inflammatory monocytes, but shows a unique expression 

in inflammatory monocytes in samples from UC patients. 

This finding encouraged me to look into further details in TLR4 - BEV protein interactions and 

to analyse the upstream part of the TLR4 pathway. Based on the in silico prediction, a bacterial 

carboxyl-terminal protease (BT_2239) is predicted to bind the receptor. In more detail, a PDZ 

domain catches a short motif - between 833-839 amino acid positions - at the end of the host 

protein’s intracellular TIR domain. The PDZ domain typically binds to the C-terminal residues 

of target proteins, helping to organise and regulate the activity of signalling complexes 461,462. 

Besides the PDZ domain, this Bt protein has two other S41 family peptidase domains but ELM 

does not contain information about the target motifs of these structural units.  
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The experiments carried out by the Carding group at the QIB validated this finding. The TLR4 

inhibitor CLI-095 and the TIRAP inhibitor lead to an incomplete inhibition of the pathway in the 

presence of Bt BEVs compared to the LPS treated monocytes. I assume that the vesicular 

proteins from Bt can potentially interact with downstream pathway components and support 

the activation of the pathway even if the receptor and its adaptor protein is blocked.  

It seems that TIRAP is an important target for the BEV proteins due to the 19 potential bacterial 

TIRAP interactors that I found. Interestingly, the four domain binding sites along the protein 

sequence are targeted by diverse enzymatic domains including phosphoesterase, 

phosphorylase, peptidase and dehydrogenase activities. Moreover, the adaptor protein shows 

condition-specific expression in inflammatory monocytes and DC1 cells. Based on these 

results, I assume that the presence of TIRAP in one of the conditions establishes an important 

interspecies connection between the Bt and human proteins. Because the adaptor is tightly 

connected to TLR4 463, the Bt targeted cytoplasmic TIR domain on the receptor can alter the 

connection between TLR4 and TIRAP which could lead to altered downstream signalling 

resulting in disrupted pro-inflammatory cytokine secretion. All together, TIRAP could be a 

relevant candidate for further research in IBD treatment. 

Although 2048 microbial proteins were detected in the proteomic analysis, the low number of 

predicted potential interactors (48) reveal the limitation of the pipeline in terms of the known 

structural information from bacterial proteins - discussion in Chapter 3 describes the future 

solution for this issue. This analysis is not suitable for depicting processes specific to a cell 

type or condition due to a large number of BEV interacting proteins in each cell type, therefore 

the output focuses mainly on common processes. A more fine-grained workflow can be 

achieved by involving gene expression values, and not only the presence or absence of a 

gene’s expression when establishing condition-specific differences.  

Despite the limitations described in Chapter 3, the established host-microbe interaction 

pipeline combines gap-filling approaches, such as structural PPI prediction and network 

analysis, which highlight the importance of condition and cell specificity. I not only identified 

new potential therapeutic targets for IBD treatment but also revealed the background of 

biological processes on the molecular interaction level.  
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Chapter 5: Predicting the effect of the oral 
microbiome to the host in healthy and in inflamed 
conditions 

5.1 Introduction 

The oral microbiome plays an important role in maintaining oral health. The colonisation of the 

oral cavity begins at birth. The first invaders are aerobic bacteria, such as Streptococcus 

(particularly S. salivarius), Lactobacillus, Actinomyces, Neisseria and Veillonella species. 

When the first tooth breaks through the gingiva, new strains inhabit the mouth resulting in a 

more diverse community as anaerobic organisms are able to appear in deeper layers of the 

gum. With tooth loss, the microbiota starts to become similar to the birth stage 68 indicating the 

importance of teeth in determining the oral microbiota.  

Description of the healthy oral microbiota is difficult because the mouth is an open system, and 

is frequently exposed to exogenous bacteria in food, water, and air. Therefore studies separate 

the ‘core’ microbiome [Figure 5.1] that includes the most common taxa appearing among 

people from the variable microbiome characterising individuals depending on their lifestyle. 
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Figure 5.1: Bacteria representing the human core oral microbiome. The phylogenetic tree reveals 
the bacteria in the healthy oral cavity at the genus level. Source of the figure: 464 
Various microbial communities are represented in the oral cavity (e.g. tong or tonsil 

microbiome), the thesis focuses on the bacteria inhabiting the gingiva, which covers and 

protects the ligament and the neck of the tooth. Based on anatomical location the microbiome 

is divided into two parts: the supragingival plaque, which covers the enamel and root surface, 

contains Gram-positive rods and cocci bacteria (e.g Streptococcus mutans, Streptococcus 

salivarius, Streptococcus mitis, Lactobacillus), appeared to be forming a tightly adherent band. 

Subgingival plaque is frequently characterised by anaerob Gram-negative species 

(Actinobacillus, Campylobacter spp, Fusobacterium nucleatum, Porphyromonas gingivalis) 

located adjacent to the epithelial lining of the pocket 82,465.  

 

 



 

109 

Subgingival bacteria organise into different complexes defined by Socransky [Table 5.1]. The 

standardised name of the complexes has been derived from the original clustering analysis 

colouring, meaning that bacteria in the same colour group are similar to each other 465.  

Purple complex, green complex and yellow complex characterise the early state. These 

bacteria facilitate the presence of the Gram-negative bacteria clusters (orange and red 

complexes). The orange complex consists of several bacteria that enable the appearance of 

the red complex 465–468. The red complex is usually found in the deeper periodontal pocket 

because these species form a separate community where interspecies interactions and 

metabolic cross-dependency are extremely strong 469.  

Table 5.1: Bacterial clusters in subgingival plaque described by Socransky et al. 
(1998) 

Purple complex Green complex Yellow complex Orange complex Red complex 

Actinomyces 
odontolyticus  

Capnocytophaga 
gingivalis 

Streptococcus 
mitis 

Fusobacterium 
nucleatum 

Porphyromonas 
gingivalis  

Veillonella parvula Capnocytophaga 
ochracea 

Streptococcus 
sanguis 

Prevotella 
intermedia 

Tannerella 
forsythensis 

Actinobacillus 
actinomycetemco
mitans (serotype 
b) 

Capnocytophaga 
sputigena 

Streptococcus 
oralis  

Prevotella 
nigrescens 

Treponema 
denticola 

Selenomonas 
noxia 

Campylobacter 
concisus 

Streptococcus 
gordonii 

Peptostreptococcus 
micros 

 

Actinomyces 
naeslundii 

Eikenella 
corrodens 

Streptococcus 
intermedius 

Campylobacter 
rectus 

 Actinobacillus 
actinomycetemco
mitans (serotype 
a) 

 Campylobacter 
showae 

 Campylobacter 
gracilis 

Eubacterium 
nodatum  

Streptococcus 
constellatus 

 



 

110 

Regardless of the location, microbiome composition has a huge impact on tissue homeostasis, 

alteration of the community composition infers a dysbiotic condition. Several external (oral 

hygiene, diet) and internal (autoimmune disease, immunodeficiency disorders) factors can 

disturb the healthy microbiome 470. The appearance of pathogens leads to enterotoxin 

secretion, which molecules alter the permeability of the epithelium. Host-microbe interactions 

are crucial for the regulation of physiological processes; alteration (rewiring) of these 

interspecies connections leads to inflammation in the host [details in Chapter 1.4.2] 471. A 

serious consequence of the disrupted equilibrium state is that bacteria are able to enter the 

bloodstream and cause diseases, such as gingivitis and periodontitis - the two main disorders 

of the gum 147. 

While gingivitis refers to the mild, easily reversed inflammation of gum (with a prevalence in 

adults of over 90%) 472, chronic periodontitis is a result of untreated gingivitis, which is a 

polymicrobial attack that destroys the periodontal ligament and supporting marrow that 

surrounds the teeth 466. Clinical studies revealed that chronic periodontitis is associated with 

several systemic diseases (diabetes, cardiovascular diseases, cancer) 473–475.  

Van Dyke et al published a model which describes how the healthy gum becomes inflamed in 

four stages: Firstly, Gram-negative bacteria replace the Gram-positives (stage 0). This shift 

causes inflammation in the gingiva (stage 1), if it alters the subgingival microenvironment there 

will be a polymicrobial emergence (stage 2). Till this point, the process can be reversed by 

external and internal factors. Lack of treatment leads to impaired inflammatory processes and 

tissue damage resulting in deeper pockets by the tooth (stage 3). This early periodontitis turns 

to late-stage periodontitis (stage 4) when inflammation-mediated dysbiosis affects the gum 1. 

In some cases, the dysbiosis starts without clinical signs - especially in older people -, therefore 

samples from a healthy patient do not necessarily mean a healthy microbiome 476. However, a 

few taxa have been strongly associated with periodontal health, such as Actinomyces and 

Streptococcus species 477,478, but the majority of bacteria inhabit both the healthy and diseased 

gingiva (e.g. Fusobacterium nucleatum, Veillonella parvula, Streptococcus oralis, 

Streptococcus intermedius and Streptococcus anginosus) 468,477.  

During the inflammation of the gum, the supragingival microbes expand to the subgingival 

area, therefore increasing the presence of anaerobic bacteria in the plaque. When the gingiva 

becomes inflamed, bacteria composition shifts from Gram-positives to Gram-negatives 479 

leading to the dominance of red and orange complex members 465. 
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Defining the gingivitis-associated pathogens is difficult due to the mild symptoms, also patients 

do not visit doctors at this stage. Therefore, microbiome composition often overlaps with 

microbes in healthy samples, if gingivitis is at an early stage, but also with periodontitis, when 

the gum is not treated 465. In the thesis, I use the term ‘periodontitis’ to describe the 

inflammation in the gingiva. 

Currently, there are studies which describe experiments or computational pipelines to analyse 

HMIs in the oral cavity 138,480–484. However, there are limitations in terms of data quality, which 

means most of these approaches are working with a few microbes and exploring their effect 

on a tissue or cell line. With the appearance of meta-omics and single-cell transcriptomics data 

this gap has been addressed and I could establish a workflow during my PhD which aims to 

predict the effect of complex microbial communities on host signalling at the cell type level. 

Instead of focusing on the whole oral microbiome, I explored the subgingival microbiome and 

its role in inflammation. Analysing publicly available datasets facilitated understanding the 

composition of the microbiome on higher taxonomic levels. Studies highlighted that Firmicutes, 

Tenericutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacterium taxa 

characterise mostly healthy gum 467,477,485 while members in orange and red complexes 

dominate in periodontitis [details in Chapter 1]. In this use case study, I was focusing on a 

limited list of strains that appear dominantly in healthy gum and during periodontitis [Table 5.2]. 
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Table 5.2: List of bacterial strains analysed in the study 

Condition Strain Role in the gingival microbiota 

Healthy gum 

Streptococcus 
sanguinis SK36 

Gram-positive facultative anaerobes, one of the first appearing bacteria which 
help to colonise the gingiva. S. sanguinis stimulates the epithelial layer to 
express IL-8 and β-defensins to defend against periodontitis-associated 
pathogens 486. 

Haemophilus 
parainfluenzae ATCC 
33392 

Gram-negative facultative anaerobe bacteria, one of the most abundant species 
in the healthy supragingival plaque interacting often with Streptococcus species 
(especially withS. australis, S. infantis, S. pneumoniae, S. oralis and S. mitis) 
487.  

Lautropia mirabilis 
ATCC 51599 

Gram negative facultative anaerobe bacteria contribute to the healthy gingival 
microbiome but are dominant in mild inflammation affected gum microbiome 488. 

Veillonella parvula 
ATCC 10790 

Gram-negative anaerobe bacteria, also being an early coloniser along with 
Streptococcus sanguinis, facilitates the colonisation of the orange and red 
complex members in the advanced state of the inflammation 465. 

Periodontitis 

Porphyromonas 
gingivalis ATCC BAA-
308 

Gram-negative anaerobe bacteria in the red complex inducing cytokine 
expression (IL-6, IL-8) in the host epithelial cells and contributes to severe 
inflammatory processes 489. 

Treponema denticola 
ATCC 35405 

Gram-negative anaerobes, which are strongly connected to the other two 
bacteria in the red complex (P. ginigivalis, T. forsythia).  

Tannerella forsythia 
ATCC 43037 

Gram-negative anaerobe bacteria, which secrete virulence factors having an 
influence on microbial community composition, therefore, leading to dysbiotic 
state and causing inflammation in the host 490. 

Filifactor alocis ATCC 
35896 

Gram-positive anaerobe bacteria responsible for inflammation-related 
processes in the host. It is not only a potential new member of the red complex 
but also interacts with the core member Porphyromonas gingivalis 491. 

Overall, I aimed to discover the effect of bacteria not only on the target cell’s signalling but also 

on intercellular interactions. Therefore I combined the MicrobioLink2 [details in Chapter 3] and 

the intercellular interaction pipeline [details in Chapter 2] to reveal interspecies interactomes 

and their effect on cell-cell connections in healthy gum and in severe periodontitis.  
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5.2 Methods 

I built up a case study based on the computational pipelines that have been described in 

Chapter 2 (intercellular interaction pipeline) and 3 (MicrobioLink2 pipeline). In this section, I 

would like to highlight the novelty and importance of the algorithms through analysing a public 

dataset [Figure 5.2]. 

 
Figure 5.2: Computational workflow to analyse the effect of the gingival microbiome on epithelial 
and immune cells in periodontal health and disease. Numbers indicate the sequence of the main 
steps: 1, Downloading the proteome of periodontal health- and disease-related bacteria. 2, Identifying 
the domain structure using the Pfam database. 3, Processing single-cell RNAseq data from the gingiva, 
4, Creating epithelial cell-specific network using the list of expressed genes combined with protein-
protein interactions from OmniPath 107, Selection of membrane-based proteins using OmniPath. 6. 
Identifying SLiMs on membrane-based proteins using ELM database. 7, Predicting protein-protein 
interactions (PPIs) between microbial and host proteins using MicrobioLink2. 8. Building up a 
downstream signalling network to follow the signal from the bacteria-targeted membrane proteins till the 
expressed genes which will be translated to ligands. 9. Building up intercellular interaction network 
between epithelial cell secreted ligands and receptors on DC’s surface using ligand-receptor interactions 
from OmniPath. 
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5.2.1 Collection of bacterial proteins 

I selected a limited number of strains that are dominant in the healthy and diseased oral cavity 

based on an internal discussion with Unilever. Due to the lack of proteomics experiments, I 

downloaded all the proteins from UniProt Proteome 274 for each strain. In the thesis, I have 

used reference proteomes that have been selected by the research community or by 

computational clustering filtering to the best-annotated proteomes in Uniprot. Using the 

PSORTb tool 492, locations have been predicted for each protein, but due to the high number 

of ‘unknown’ and multiple location annotated proteins, I decided not to filter the bacterial 

proteins based on their place in the cell. 

5.2.2 Single-cell transcriptomic analysis 

I analysed a publicly available study published by Caetano et al 193. Samples were taken from 

the buccal gingival margin region from four patients (two healthy, one with moderate 

periodontitis and one with severe periodontitis). Matthew Madgwick processed the published 

raw dataset (GSE152042) with the parameters defined in the original article. In general, errors 

in omic data analysis can arise from various sources such as poor quality control, data 

processing or statistical methods. The developed in-house pipeline is aware of the potential 

sources of bias and tries to minimise them by using appropriate quality control measures, and 

bioinformatics methods [details in Chapter 2]. 

Output files described the normalised count values for each gene in each cell and the average 

expression of genes under healthy, mild and severe periodontitis. I selected the healthy and 

severe periodontitis conditions to study the effect of microbes on host signalling. 

5.2.3 RNAseq data filtering 

To filter the processed RNAseq dataset, I used the same z-score normalisation method as 

described in Chapter 2, however, I added another gene expression filtration method for the 

data. Single-cell transcriptomics measures the gene expression in each individual cell in the 

sample and calculates an average of expression values counting with all of the cells. I 

discarded those genes which were expressed in less than 10% of cells clustered in a cell type 

in a specific condition. This method facilitates discarding technical or biological issues, such 

as differences between samples or lack of gene expression, coming from the experiment. 
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5.2.4 Inferring a host-microbe interaction network 

I selected the epithelial cells from the single-cell dataset as the first layer that interacts with the 

bacterial community. The scRNAseq identified three different subpopulations of epithelial cells 

based on their differentiation states and markers: basal cells expressing HOPX, IGFBP5 and 

LAMB3; proliferating basal cells expressing MKI67 and TOP2A; and mature cells expressing 

KRT1, KRT8, LAT and PTGER marker genes. Because I was interested in the interactions 

between microbes and human proteins on the surface of the gingival layer, I selected the 

mature epithelial cells for the analysis. Assuming that every gene - which passed the filtration 

criteria - is translated to functional active proteins, I selected the membrane-based candidates 

using OmniPath and downloaded their sequences from UniProt. The established 

MicrobioLink2 pipeline was used to connect the healthy- and severe periodontitis-related 

microbiome dominant strains to the expressed human proteins. 

5.2.5 Functional analysis of microbe-targeted human proteins 

The in silico prediction highlighted the potential bacteria-affected human membrane proteins. 

I carried out a functional analysis to reveal their role in biological processes using the GOrilla 

web-based tool (http://cbl-gorilla.cs.technion.ac.il/) 401 [details in Chapter 3]. 

5.2.6 Downstream network modelling 

Network propagation algorithms help to connect the perturbation points (host proteins which 

are in contact with the microbial proteins) to the (differentially) expressed genes through PPIs, 

and give a detailed insight into the signal spreading. I used TieDie 250 to look at the signalling 

pathways affected indirectly by microbes by binding to the cell surface proteins [details in 

Chapter 3].  

In this use case, I modelled two networks, one for the healthy condition and one for severe 

periodontitis. The reason for not using differentially expressed genes is that I aimed to reveal 

signalling processes in the two conditions separately, not only focusing on differences but 

including overlapping functions as well. The final network described the signal spread in the 

following order: bacterial protein → human targets → signalling pathway → transcription factor 

→ target gene expression. To avoid large interactomes, I was focusing on the effect of host-
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microbe interactions on ligands secretion, therefore as endpoints, I selected those expressed 

genes which are translated to ligands using annotations from the OmniPath 107.  

I analysed which pathways could be potentially activated by upstream host-microbe 

interactions. I repeated the same functional analysis as in the case of bacteria-targeted human 

proteins, however the input protein list contained members of the downstream signalling 

network.  

5.2.7 Reconstructing an epithelial cell - immune cell interaction network 

I connected the epithelial layer to dendritic cells through ligand-receptor interactions (LRIs) to 

analyse the effect of the altered microbiome composition in the subgingival plaque on immune 

cells. Details about the intercellular interaction workflow are described in Chapter 2.  

As a final step, to have a look not only at the pathways but also at the downstream processes 

which have been affected by the epithelial ligands, I created a dendritic cell-specific signalling 

network for both the healthy and diseased conditions to follow the signal spread in the cytosol 

as well. I selected the receptors which were in connection with ligands and their first neighbours 

- the proteins which they are interacting with - and created a subnetwork. This time, I used the 

Reactome database instead of the GO term-specific GOrilla tool. I looked for enriched 

pathways which were reached by the receptor using the default background settings in 

Reactome (curated entities in the database) . 

5.3 Results 

5.3.1 An in silico host-microbe protein-protein interaction network  

I downloaded the bacterial proteomes from each condition to identify the proteins (~2000-3000 

protein/strain) and their domains [Supplementary Table 5.1]. Meanwhile, 3344 genes were 

described in healthy epithelial cells and 3916 genes in severe periodontitis samples, although 

the selection of membrane-based proteins reduced their number. The in silico prediction 

identified 921 HMIs in healthy and 91 HMIs in diseased condition [Figure 5.3]. I found 8 

domains out of 831 in health-related and 13 out of 1577 domains in periodontitis-related 

bacterial proteomes which can cause a significantly smaller size of the diseased network 
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[Table 5.3]. These results suggest that commensal and pathogenic proteins may have specific 

domain structures which can not be found in the ELM and 3did databases.  

Table 5.3: Bacterial Pfam domains targeting SLiMs on human proteins 

Healthy condition Periodontitis 

Pfam Accession Domain name Pfam Accession Domain ID 

PF00149 

Calcineurin-like 
phosphoesterase 
domain PF00149 

Calcineurin-like 
phosphoesterase 
domain 

PF00899 ThiF-family domain PF00899 ThiF-family domain 

PF00533 BRCT domain PF00533 BRCT domain 

PF00082 S8 peptidase domain PF00082 S8 peptidase domain 

PF00389 

 
D-isomer specific 2-
hydroxyacid 
dehydrogenase, 
catalytic domain PF00389 

D-isomer specific 2-
hydroxyacid 
dehydrogenase, 
catalytic domain 

PF01048 Phosphorylase domain PF00675 M16 peptidase domain 

PF00535 
Glycosyl transferase 
family 2 domain PF00535 

Glycosyl transferase 
family 2 domain 

PF00595 PDZ-domain PF01048 Phosphorylase domain 

 
PF00515 

Tetratricopeptide 
domain 

PF00089 
Trypsin domain 

PF01344 
Kelch domain 

PF00498 
FHA (Forkhead-
associated) domain 

PF00069 
Protein kinase domain 
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Figure 5.3: Host-microbe interactions in A) healthy and B) severe periodontitis conditions 
predicted by MicrobioLink2. Healthy (green) and diseased (red) bacterial proteins are grouped by 
strains and linked to the membrane-based human proteins highlighted by yellow. The networks were 
created with Cytoscape 326. 
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5.3.2 Functional analysis of host target proteins 

The GOrilla tool highlighted several biological processes among bacteria-targeted membrane 

proteins although the results were difficult to analyse due to the redundant annotations in the 

database. Therefore I visualised the GO terms in REVIGO 439. The REVIGO tool organises the 

annotations and removes the redundant terms, therefore, facilitating to identify of overlapping 

functional categories, such as metabolic or biosynthetic processes, and chromatin organisation 

but also reveals differences between conditions, such as Notch signalling in healthy gum or 

regulation of MAPK cascade in severe periodontitis [Figure 5.4]. 

.  

Figure 5.4: Functional analysis of bacteria targeted human proteins. The size of the points is equal 
to the number of proteins involved in the function, the colour represents the log10 p-value (red- lowest 
value, yellow - highest value). The diagrams were created with the REVIGO tool 439. 
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5.3.3 Downstream signalling network modelling 

I built up the signalling networks of healthy and periodontitis-affected epithelial cells using 

TieDie. The input for the algorithm included (1) bacteria-affected membrane-based receptors 

potentially translated from genes identified from scRNAseq dataset (86 genes from healthy 

and 10 genes from diseased condition); (2) directed PPI network from OmniPath including 

47925 interactions; (3) expressed genes in healthy and periodontitis samples (110 genes from 

healthy and 151 genes from diseased condition). The networks consisted of five different types 

of nodes: bacterial proteins, human membrane proteins, intermediate signalling proteins, 

transcription factors (TFs) and expressed genes that are potentially translated to ligands. 

Interestingly, although the number of bacteria-affected proteins was significantly less in 

periodontitis (5), the number of proteins in the intermediate network was similar to the healthy 

condition [Figure 5.5]. Besides, comparing the edges, I found a ~50% decrease in the number 

of connections in inflamed condition. These findings assume that the triggered signal by HMIs 

is less scattered and specific pathways were activated during periodontitis.  

To establish statistical evidence, a randomised network analysis was conducted to examine 

the number of nodes and edges. Initially, 500 sets of five membrane proteins were randomly 

selected from the OmniPath database. TieDie was then run using the same intracellular 

network and downstream input utilised in the periodontitis analysis. The distribution of total 

node/edge counts among the 500 networks was visualised and the mean and standard 

deviation of the attributes were calculated to obtain the z-score (as described in Chapter 2.2.3). 

The results showed that the average number of nodes in the random networks was 65 

(standard deviation = 17.8) and the average number of interactions was 201 (standard 

deviation = 74.6). This indicated that the periodontitis network, consisting of 158 proteins (not 

including the 19 downstream genes), had significantly more proteins compared to a network 

connecting random 5 proteins with the same downstream genes (z-score = 5.22). However, 

the edge number analysis revealed that the original periodontitis network, with 663 

interactions, was still more connected than the random networks (z-score = 6.24). 
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Figure 5.5: Signalling network in epithelial cells focusing on the downstream effect of bacteria 
in A, periodontal health and B, during severe periodontitis. The figures show the output of the TieDie 
algorithm connecting the upstream perturbation points to the expressed genes. 
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I revealed the pathways/functions in which the downstream components play a role using 

GOrila. While ~70% (813 annotations) of the processes did overlap between the conditions, I 

found intriguing differences in the rest of 30%, such as negative regulation of T cells and 

regulation of B cell activation in healthy condition and cytokine-mediated signalling (IL-12, IL-

6. IL-23) and TLR signalling in diseased condition-specific networks [Figure 5.6]. In the healthy 

network, out of the 3344 expressed genes, 222 are represented in the subnetwork. Similarly, 

in the diseased network, out of the 3916 expressed genes, 177 are represented. It is important 

to note that revealed annotations are primarily focused on the bacteria-targeted proteins and 

their impact on ligand secretion, as only approximately 7% of the molecules have been found 

in the subnetworks. 

 
Figure 5.6: Overlap between functions across bacteria-affected membrane proteins, intermediate 
proteins, TFs and expressed genes translated to ligands.  

5.3.4 Interaction between epithelial and dendritic cells 

Epithelial cells are able to secrete immune system modulatory cytokines 493, and have an 

impact on DCs 494 therefore, I explored the interplay between the two cell types. As the results 

show, the epithelial cells express different sets of ligands under diverse conditions. The 

inflammation-related TGFB1 and CCL19 were expressed only during severe periodontitis and 

were not found among genes in the healthy cells. Also, the functional analysis of bacteria-

targeted human proteins identified the Notch pathways were uniquely affected in healthy 

condition, here I found that the NOTCH1 is expressed only in healthy state. Having a closer 

look at the receptors on the DC’s surface also revealed condition specificity as I identified 60 

receptors from healthy and 48 receptors from diseased cells [Figure 5.7]. 
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Figure 5.7: Overlap of epithelial cell secreted ligands and DC expressed receptors in healthy 
(green) and periodontitis (red) conditions. The condition specific ligands (genes coding them) are 
listed on the left side. 

I connected the ligands to the receptors which resulted in 313 LRIs in the healthy gum and 328 

LRIs in periodontitis. I visualised the interactions on a circos plot [Figure 5.8]. In OmniPath, 

some proteins have both receptor and ligand annotations, thus, I discarded these 

multifunctional points when creating the plot.  

I compared the receptors on the target cell surface not only by their presence or absence but 

also by their role in signalling pathways (Innate immune system-related-, JAK/STAT-, Notch-, 

Receptor Tyrosine Kinase (RTK)-, WNT- and TLR signalling) using information from 

SignaLink3. I found that there is no difference on the pathway level, however, the signalling 

components vary between conditions. Most of the LRIs have an effect on TLR signalling, while 

only a few are related to the Notch pathway [Figure 5.8]. 
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Figure 5.8: Condition-specific connections between epithelial cell ligands (upper semicircles, 
black) and DC receptors (lower semicircles, coloured by pathways) in A, healthy control and B, 
severe periodontitis. Immune—innate immune response, RTK—receptor tyrosine kinase, TLR—Toll-
like receptor. Circos plots were created by using the ‘circlize’ R package 325. 
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As a complementary analysis, I examined the changes in the perturbed signalling by the 

Reactome database, but I extended the analysis to the first neighbours of the receptors (ie., 

the direct protein interactors of the receptors) [Table 5.4 (p < 0.05, FDR = 5.11E)]. Results 

suggest that most of the signalling overlap between conditions but there are condition-specific 

differences, such as Notch signalling in healthy gum and death receptor signalling and Myd88-

independent TLR4 cascade in severe periodontitis. 

Table 5.4: Top 10 signalling pathways represented among the receptors and their 
first neighbours 

Healthy condition Periodontitis 

Signalling by CSF3 (G-CSF) Signalling by CSF3 (G-CSF) 

Inactivation of CSF3 (G-CSF) signalling MyD88-independent TLR4 cascade 

Constitutive Signalling by NOTCH1 PEST 
Domain Mutants 

TRIF(TICAM1)-mediated TLR4 signalling 

Signalling by NOTCH1 Interleukin-3, Interleukin-5 and GMCSF 
signalling 

Interleukin-3, Interleukin-5 and GMCSF 
signalling 

Toll-Like Receptor 4 (TLR4) Cascade 

TRIF(TICAM1)-mediated TLR4 
signalling 

Interleukin-4 and Interleukin-13 signalling 

Interleukin-4 and Interleukin-13 
signalling 

Death Receptor Signalling 

Toll-Like Receptor 3 (TLR3) Cascade Signalling by Interleukins 

VEGFA-VEGFR2 Pathway Toll-like Receptor Cascades 

MyD88-independent TLR4 cascade Cytokine Signalling in Immune system 
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5.4 Discussion 

The microbiome plays an important role in homeostatic processes in the host therefore the 

altered community composition leads to differences in host signalling 41. Currently, there are 

no studies which explore the role of complex microbiota on epithelial cell signalling and also 

infer cell-cell signalling networks between the epithelial and immune cells to explore the role 

of altered intercellular communication during inflammation. In this chapter, I presented a use 

case of the developed host-microbe and intercellular interaction pipelines to highlight the role 

of the microbiome in subgingival plaque on host inflammatory processes. Cell type- and 

condition-specific gene expression profiles lead to rewired protein-protein interactions between 

microbes and the host.  

I analysed a publicly available single-cell transcriptomic dataset and combined it with network 

resources to establish a host-microbe interactome between a limited list of bacteria dominantly 

appearing in healthy condition or severe periodontitis and epithelial cell from the marginal part 

of buccal gingiva. Besides, I created cell-cell interactomes focusing on LRIs between epithelial 

and dendritic cells to show the indirect role of the altered microbiome on immune system 

modulation during severe periodontitis. 

In general, the host-microbe interaction prediction revealed a potentially decreasedamount of 

PPIs in the diseased state. In a healthy state, host-microbe interactions are often beneficial to 

both the host and the microbe. The microbe may help to maintain a balance of the host's gut 

microbiome, for example, by competing with other microbes for resources or by producing 

molecules that modulate the host's immune response. In contrast, in a diseased state, the 

host's immune system may respond more strongly to the presence of the microbe, leading to 

inflammation and tissue damage. This increased immune response can disrupt the normal 

interactions between the host and microbe, making it difficult for the microbe to survive in the 

host. Additionally, the microbe itself may produce toxins or other virulence factors that 

contribute to the disease state, further disrupting host-microbe interactions. Also, the microbe 

may avoid the host immune system by mutating, changing surface proteins, and hiding inside 

host cells. Therefore microbes may evade detection and reduce host-microbe interactions and 

in a diseased state, the number of host-microbe interactions is less than in the healthy state. 

The results highlighted several already published responses, such as the activated MAPK 

cascade during periodontitis leading to cytokine secretion 495,496 and the central role of the TLR 

pathway upon infection and inflammation 497,498, but I also found surprising outcomes of the 
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analysis. Firstly, the established host-microbe interaction networks showed differences in 

terms of the number of their host targets. I found a low number of membrane-based targets (8) 

during periodontitis due to the limited number of interacting bacterial proteins (31). Because 

pathogenic bacteria have more potential domains to reach the host proteins I assume that 

some pathogen-specific domains can not be found in the ELM or 3did database, therefore 

these structural elements can not be part of the prediction 499. Secondly, the Notch signalling 

came up several times during the analysis, as a pathway affected by the healthy microbes. 

Notch pathway is important in cell differentiation and essential for bone development. Recently, 

researchers identified the altered Notch signalling contributing to severe periodontitis. 

Experiments show that a lower level of NOTCH1 is related to periodontitis in patients 500,501. 

The analysis of expressed ligands by epithelial cells supported this statement by identifying 

NOTCH1 as a healthy condition-specific ligand. Thirdly, functional analysis of the microbiome 

triggered downstream signalling showed that B cell activation and differentiation is affected 

and T cell activation is negatively regulated in healthy condition while in periodontitis the 

proliferation of CD8+ alfa-beta T cells is enhanced in epithelial cells. This T cell subpopulation 

expresses the alfa and beta chains of the T cell receptors and is responsible for MHC-I complex 

recognition [details in Chapter 1] and for the elimination of malignant/infected cells 502. In terms 

of the affected B cell differentiation and activation, studies show that the amount of B cells is 

low in healthy gum and also mostly memory B cells are represented 502–507. There is no 

information about the effect of proteins on B cell signalling but based on the literature the B 

cell activation pathway should be negatively regulated and the differentiation shifted towards 

memory B cell production. 

Furthermore, several cytokine-related pathways were found among the affected proteins in 

periodontitis. Although I identified proteins playing a role in the positive regulation of IL12 

secretion, this cytokine is expressed exclusively by immune cells. Because cytokine signalling 

is a complex network consisting of pathways which are cross-talking, potentially those proteins 

have been highlighted here which play a role in other cytokine secretion pathways, such as 

IL6 or IL23 expression. Experiments support the fact that IL6 and IL23 expression by epithelial 

cells is enhanced in gingiva when Porphiromonas gingivalis - a member of the red complex - 

is presented in the microbiome 482,508.  

The functional analysis highlighted that DC chemotaxis is among the periodontitis-specific 

processes triggered by HMIs downstream that assumes an altered communication between 

the gingival epithelium and DCs. This finding drove me in the direction of observing a potential 

altered communication between epithelial and dendritic cells during periodontitis. 
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The migration of these immune cells is usually caused by the interaction of chemokines and 

DC receptors. Such an interaction takes place between CCL19 chemokine and the CCR7 

receptor which has been identified in the intercellular communication analysis [Figure 5.8] 509. 

Although results show that the number of LRIs did not change between conditions, the type of 

intercellular communication was altered.  

I used two resources, SignaLink3 and Reactome, to analyse the role of epithelial ligand-

affected receptors (and their first neighbours in Reactome analysis) in different signalling 

pathways. Both of the examinations revealed TLR signalling, as the most affected pathway in 

the intercellular network. Not surprisingly, TLRs are important receptors on the surface of DCs, 

especially during pathogen infection, controlling cytokine secretion 509. One of the most 

important differences among the affected receptors contributing to TLR signalling activation is 

the healthy gum-related expression of the CD46 co-receptor. A recently published study 

highlights the role of this receptor in the downregulation of CXCL-10 inflammatory chemokine 

in DCs 510 which shows the control of the host inflammation processes in a homeostatic state. 

In contrast, analysis of peridontitis-derived samples revealed the unique expression of killer-

cell immunoglobulin-like receptors (KIR) on the surface of DCs. KIRs are able to sense 

pathogens and activate cytokine expression usually on the surface of Natural Killer cells, but 

literature provides information about its expression in DCs as well 511.  

Whilst providing new and potentially important insights into the altered microbiome composition 

and its effect on inflammation, the analysis has several limitations: (1) the lack of metadata 

resulted in the examination of the whole proteomes in each bacterial strain, (2) at the time of 

the analysis only one scRNAseq dataset was available to explore gene expression in healthy 

and severe periodontitis derived gingival cells, (3) the number of patients was low, only four. 

The detailed limitations of the intercellular interaction and MicrobioLink2 pipelines are 

described in Chapter 2 and Chapter 3.  

Despite these challenges, the use case provides a deeper insight into the effect of the altered 

microbiome on host immunity at the protein level. In addition to predicting the affected host 

processes supported by the literature, I was able to reveal the molecular background and the 

key points in the signalling networks which facilitates the identification of new targets for 

experimental validation. 
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Chapter 6: Perspectives and final discussion 

The epithelial layer establishes a tightly connected barrier separating the microbes from the 

body, including most of the immune cells. To maintain homeostasis, these epithelial cells 

communicate with the nearby immune cell populations. Understanding the interspecies host-

microbe and the epithelial-immune intercellular interactions is crucial because their altered 

interactions lead to inflammation in host tissues. During my PhD, I aimed to develop 

computational workflows that examine interactions between the microbiome, the epithelium 

and the immune system. I chose inflammation-related diseases in the gastrointestinal tract as 

case studies for in silico analyses.  

Intercellular interactions are essential for developing and growing multicellular organisms. It is 

well-studied that the communication between epithelial and immune cells coordinates 

responses to maintain homeostasis and prepare host defence 512. Nevertheless, recent studies 

revealed that fibroblasts are also important components in immune cell regulation and 

modulate locale immune response 513. 

In Chapter 2, I presented an in silico intercellular interaction workflow to explore cell-cell 

interactions in healthy and diseased conditions. As part of this project, I worked on the update 

of the OmniPath database, a resource contributing to understanding cell-cell signalling at the 

molecular interaction level. Researchers can ask fundamental questions about cellular 

communication or physical cell-to-cell interactions and address them by using OmniPath 

combined with single-cell data analysis. To demonstrate the LRI pipeline, I analysed public 

single-cell transcriptomic data 312 from healthy and ulcerative colitis (UC) patients. UC is a 

subtype of inflammatory bowel disease (IBD) where the colon and rectum become inflamed. 

Cell-cell interactions are rewired during the disease 312, however, a limited number of studies 

share proof of the altered intercellular communications. The developed LRI pipeline revealed 

essential information about cell-cell connections in disease, such as the shift of target cells 

from the dendritic cells (DCs) in the healthy colon to regulatory T cells (Tregs) in diseased 

samples. Also, the focused myofibroblast-Treg interaction analysis showed the central role of 

the target cells to switch between pro- and anti-inflammatory signalling pathways depending 

on the interacting myofibroblast’s ligands. 

 



 

130 

The microbiome plays an essential role in homeostatic processes too. The microbial 

community consists of both commensal and harmful microbes but these species are often in 

an equilibrium state in healthy conditions. Studies show that dysbiosis disturbs this balance 

and contributes to inflammation and the appearance of diseases, such as gingivitis in the oral 

cavity or inflammatory bowel disease in the gut 83. However, the current knowledge about the 

molecular details of how pathogens modulate inflammation-related pathways is still limited 514. 

In Chapter 3, I presented MicrobioLink2, an in silico host-microbe interaction prediction 

algorithm that facilitates the understanding of cross-species interplays and their downstream 

effect on host signalling including inflammatory processes. This integrated approach is also 

capable of pointing out key microbial inferences, and cellular pathways transmitting normal 

microbial signals. The structural composition-based approach highlights the exact bacterial 

domains and their target motif on host proteins that gives a detailed insight into the mechanism 

of the protein-protein interactions.  

Although there has been a steeply increasing amount of data in IBD research, patients still 

suffer from life-long symptoms. Current therapies aim to keep patients in a clinical remission 

state by suppressing the symptoms. The drawback of these treatments is that patients’ 

intestinal tract is still exposed to inflammation that could lead to long-term problems, such as 

colon cancer 515. The knowledge about gut microbiome composition is expanding due to the 

elevated number of meta-omic datasets but also host response becomes more understandable 

with the use of single-cell analysis. The established pipelines attempt to predict new 

therapeutic targets to treat IBD patients.  

Interspecies interactions are crucial for the initiation and progression of periodontal diseases. 

Pathogens secrete proteases and endotoxins to destroy the extracellular matrix and trigger an 

inflammatory response. There is direct evidence for the contribution of the altered microbial 

film around the teeth to pro-inflammatory cytokine secretion by gingival cells 1. 

The pathomechanism of the two diseases is different, but the effect of interspecies connections 

plays a fundamental role in inflammatory processes 516,517. Dysregulation of the cellular 

behaviour in epithelial cells results in altered cytokine secretion and potential infiltration of 

bacteria into the lamina propria by disrupted cell-cell interactions. Both processes generalise 

inflammatory response resulting in high levels of pro-inflammatory cytokines 482,518,519. In the 

early 1990s, researchers described that patients suffering from IBD have periodontitis with a 

higher prevalence 520. The co-occurrence of the disease is high, and the gum inflammation is 

more severe in IBD patients 521. Periodontitis and IBD are multifactorial diseases, sharing 

factors involved in the pathogenesis (e.g. smoking, diet), microbiological impact, and immuno-
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inflammatory response. Both diseases are characterised by a shift to Gram-negative bacteria 

in the microbiome 522. Besides, a few microbes (Campylobacter rectus, Porphyromonas 

gingivalis and Tannerella forsythia) appear in inflamed gingiva and are enriched in IBD 523,524. 

Several papers explore the connection between oral and gut inflammation 520,521,525–529, but still, 

there are conflicting results, indicating a complex, personalised pathomechanism of diseases.  

Case studies revealed the central role of the Toll-like receptor (TLR) pathway during 

inflammation from different perspectives. In fact, it has been known from the literature years 

ago, but the pipeline gave an insight into the cell and condition specificity of the pathway. In 

Chapter 2, I revealed that different parts of the signalling were enriched in Tregs under diverse 

conditions. In healthy colon the TLR2/6 and TLR7/8 signalling, while in UC patients the TLR3 

and TLR4 receptors-mediated signalling were enriched. In Chapter 4, I modelled the TLR 

pathway in several immune cell (sub)populations under healthy and UC conditions in presence 

of gut commensal bacteria. This approach introduced the TLR signalling on the level of 

molecular interactions. I combined the signalling network with single-cell data to observe the 

expression of pathway members in various immune cell types and showed altered interactions 

with the bacteria. Finally, in Chapter 5, I examined the affected cellular pathways in epithelial 

cells and DCs in the gingiva. Results showed that the TLR pathway is affected by HMIs on the 

cell surface of epithelial cells during periodontitis. Not surprisingly, in DCs TLR pathway was 

triggered by epithelial ligands in both conditions, however diverse sets of receptors were 

activated.  

The appearance of meta-omics and single-cell transcriptomic data allowed the implementation 

of multi-omics data analysis pipelines. To take advantage of the information about microbiome 

composition details, I could fill a gap in the current knowledge to better understand the 

pathomechanisms of bacterial communities on host cells and highlight differences in cell type 

levels. Hopefully, there will be more paired multi-omics data available soon, describing both 

meta- and host data from the same samples that can be analysed seamlessly and efficiently 

with the developed pipelines. Contributing to OmniPath established a new direction for my 

project and gave me a strong base for intercellular analysis. All in all, in my PhD projects, I 

predicted interactions and effects that got validated from existing literature, such as the central 

role of TLR pathway in inflammation. However, I also revealed cell-specific differences in 

inflammation, such as the healthy condition-related expression of TIRAP adaptor protein - a 

potential new therapeutic target for IBD treatment - in one of the DC subpopulations. 
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The prediction of protein-protein interactions has been improved in the last few years as more 

and more machine learning based approaches came to light. These approaches use 

computational models trained on large sets of known PPIs to predict new interactions. There 

are several categories of machine learning approaches used in PPI prediction, including deep 

learning methods that use neural networks to model the sequence, structure, or both of the 

interacting proteins (e.g. DWPPI tool 530). They have shown to be very effective models, 

achieving high accuracy and outperforming traditional methods 530. The field is constantly 

evolving and new methods are being developed and tested to improve the performance of PPI 

prediction.  

AlphaFold2 is a protein structure prediction algorithm developed by the European Molecular 

Biology Laboratory and the University of Washington. It uses deep learning techniques to 

predict the 3D structure of a protein from its amino acid sequence. AlphaFold2 was announced 

in 2018 as a significant improvement over the original AlphaFold algorithm, achieving near-

experimental accuracy in many cases 393. The algorithm has been used in a number of 

research studies and has the potential to aid in drug discovery and the design of new 

biomaterials 531–533. 

While the original aim of AlphaFold is to predict 3D protein structures, bacterial domains can 

also be inferred with the algorithm by uploading the bacterial protein sequence to the 

webservice (https://alphafold.org/). It's important to keep in mind that the accuracy of the 

prediction will depend on the specific input, and the quality of the prediction may vary for 

different bacterial domains. Therefore, it's recommended to validate the predictions using 

experimental methods, if available. 

I have plans to improve MicrobioLink2 in the near future by extending the model with predicted 

bacterial domains coming from AlphaFold to increase the number of potential host-microbe 

PPIs. Besides, I would like to include the detection of cross-species interplay to bacterial 

metabolite-human protein interactions in MicrobioLink, and focusing more on the role of small 

molecules on host cell receptor activation. The microbiome is a dynamic community, bacteria 

secrete metabolites to ‘communicate’ with each other therefore facilitating co-occurrence or 

modulating competition between strains 534. A dysbiotic condition leads to altered microbiota 

composition, which has an effect on the robustness and connectivity of microbial interaction 

networks 535. Network fragility modelling reveals the association between microbes in a 

community based on meta-omics (metataxonomics, metagenomics) analysis 536. Fragility 

measures how easy it is to disrupt the network and how coherent is the connection between 

the bacterial species/strains 537. On the one hand, altered metabolic secretion - as an outcome 
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of dysbiotic communities - affects differently the human tissue/cells which are inhabited by the 

community 538. On the other hand, the perturbed host cell signalling may lead to altered 

metabolite secretion which, reflecting the changes, interacts with the microbiome 538. Based 

on these assumptions, there is a potential and exciting connection point between the bacteria-

bacteria and host-microbe interactions that I would like to discover later. 

Microbiome analysis became a hot research area recently, as researchers found that the 

disrupted community potentially leads to diseases. Recently, I had the opportunity to write a 

preview article to Cell about a very interesting article 539 examining the role of the skin 

microbiome in vector-borne disease transmission 540.  

The main outputs of my PhD work are the following: 

● Established workflows to analyse single-cell data and build up cell type- and condition-

specific networks 

● Making an impact on cell-cell connection analysis by the development of the 

intercellular interaction pipeline and contributing to OmniPath, a gap-filling resource to 

study the intercellular interplay 

● Developed the MicrobioLink2 pipeline that examines host-microbe interactions from a 

new perspective including the downstream effect of complex microbiomes on host 

signalling 

● The developed workflows have already been used within my research group for current 

and future projects.  

 

During my PhD, I published the updated OmniPath and intercellular interaction pipeline in 

Molecular Systems Biology [Chapter 2] 107. The case study in Chapter 4 appeared in the 

Journal of Extracellular Vesicles beginning of this year 437. Both of these journals are the 

premier journals in their respective fields. We were recently invited to submit the MicrobioLink2 

pipeline to Cell Press’s STAR Protocol journal.  

The COVID-19 pandemic strongly affected my research between 2020 - 2022. Our research 

group established several side projects to study the effect of the virus on human signalling 

pathways. We developed the ViralLink pipeline published in PLoS Computational Biology 541, 

studied the effect of Sars-CoV-2 on epithelial-immune cell interactions appeared in npj 

Systems Biology and Applications 542, and cytokine expression in Frontiers in Immunology 142, 
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and finally, we established a cytokine communication map, called CytokineLink published in 

Cells, to model cytokine-cytokine interactions 543. I contributed to these projects with the 

MicrobioLink2 and the intercellular interaction pipelines, therefore there is no separate chapter 

for these studies. I hope that these articles will reach other research communities and the 

pipelines will be used/improved by them as well. 

I contributed to autophagy-related publications during the first two years of my postgraduate 

studies. I had the possibility to co-work on a review in Frontiers in Cell and Developmental 

Biology about available databases, and resources in the field of autophagy research 544. Later, 

I published as a joint-first author my Master's thesis in the Disease Models and Mechanisms 

journal about proteomic data analysis derived from organoids exposed to impaired autophagy 

compared to control systems 545. Also that year, we examined the effect of bacterial pathogens 

on the autophagy process and published it in the Autophagy journal 379. Finally, I was involved 

in the development of the SignaLink3 database published in the Database issue of Nucleic 

Acids Research 165. 

As an iCASE PhD candidate, I worked together with Unilever, the industrial collaborator of the 

PhD. They were interested in host-microbe interactions in healthy and inflamed gingiva and 

scalp. Due to the lack of public microbiome and host transcriptomics data from the scalp, I 

focused on data analysis in the gingiva and provided the MicrobioLink2 pipeline for internal 

commercial purposes at Unilever. Following a handover session during my placement, 

Unilever is capable of running the pipelines with their confidential data. This was a key 

objective in the original iCASE project agreement. 

In conclusion, the thesis provides methodological and biological advancement in the field of 

cell biology and cellular microbiology. The developed pipelines give mechanistic insight into 

host-microbe interactions and their effect on epithelial and immune cell signalling, including 

the context of inflammation-related diseases. The case examples reveal the high connectivity 

of factors that have an effect on inflammation and an outstanding need for such computational 

analysis and in silico workflows. Due to a lack of experimental validations, my aim was not 

necessarily to highlight potential new signalling pathways in inflamed conditions. I aimed to 

explore the molecular background of the currently known implications of pathogen-associated 

inflammation and extend it to the individual cell level. The highlighted limitations identified the 

project's next steps and future directions. The improved pipeline should lead to a better 

understanding of homeostasis and drive the development of targeted approaches for 

preventing and treating dysbiosis-related disorders such as periodontitis and IBD. 
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Appendix 1: Supplementary material 

 

Supplementary Table 2.1: Number of condition-specific intercellular PPIs  

Source cell Target cell Healthy condition UC condition Difference 

Goblet cell Myofibroblast 343 316 27 

Goblet cell Dendritic cell 654 166 488 

Goblet cell Regulatory T cell 450 486 36 

Goblet cell Macrophage 416 266 150 

Myofibroblast Goblet cell 458 206 252 

Myofibroblast Dendritic cell 653 164 489 

Myofibroblast Regulatory T cell 472 478 6 

Myofibroblast Macrophage 428 254 174 

Dendritic cell Goblet cell 372 158 214 

Dendritic cell Myofibroblast 253 250 3 

Dendritic cell Regulatory T cell 355 343 12 

Dendritic cell Macrophage 299 182 117 

Regulatory T cell Goblet cell 427 183 244 

Regulatory T cell Myofibroblast 304 286 18 

Regulatory T cell Dendritic cell 610 146 464 

Regulatory T cell Macrophage 365 217 148 

Macrophage Goblet cell 622 272 350 

Macrophage Myofibroblast 456 428 28 

Macrophage Dendritic cell 865 218 647 

Macrophage Regulatory T cell 450 486 36 
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Supplementary Table 2.2: Top ten overrepresented pathways in upstream Treg 
signalling network 

Healthy condition Non-inflamed UC 

Pathway Entities 
found 

Entities 
total 

Pathway Entities 
found 

Entities 
total 

Signaling by RAS mutants 30 54 MyD88-independent TLR4 
cascade  62 97 

Signaling by moderate kinase 
activity BRAF mutants 30 54 TRIF(TICAM1)-mediated 

TLR4 signaling  62 97 

Signaling downstream of 
RAS mutants 30 54 Toll Like Receptor 3 

(TLR3) Cascade 61 93 

Paradoxical activation of RAF 
signaling by kinase inactive 
BRAF 

30 54 VEGFA-VEGFR2 Pathway 62 98 

Oncogenic MAPK signaling 43 93 Transcriptional Regulation 
by TP53 163 367 

Toll Like Receptor 
TLR6:TLR2 Cascade 52 118 Cell Cycle 228 651 

MyD88:MAL(TIRAP) 
cascade initiated on plasma 
membrane 

52 118 

Diseases of signal 
transduction by growth 
factor receptors and 
second messengers 

168 393 

Toll Like Receptor 2 (TLR2) 
Cascade 52 121 Signaling by NTRK1 

(TRKA) 69 117 

Toll Like Receptor 7/8 
(TLR7/8) Cascade 47 103 RNA Polymerase II 

Transcription 390 1379 

Toll Like Receptor 
TLR1:TLR2 Cascade 52 121 Generic Transcription 

Pathway 359 1257 
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Supplementary table 5.1: Number of bacterial proteins derived from UniProt 
Proteome 

Condition Strain Number of proteins 

Healthy gum 

Streptococcus sanguinis SK36 
2269 

Haemophilus parainfluenzae ATCC 33392 

2010 

Lautropia mirabilis ATCC 51599 
2665 

Veillonella parvula ATCC 10790 
1843 

Periodontitis 

Treponema denticola ATCC 35405 
2753 

Porphyromonas gingivalis ATCC BAA-308 1863 

Tannerella forsythia ATCC 43037 2978 

Filifactor alocis ATCC 35896 1616 

  



 

176 

Appendix 2: Peer-reviewed publications 



 

177 



 

178 



 

179 



 

180 



 

181 



 

182 



 

183 



 

184 



 

185 



 

186 



 

187 



 

188 



 

189 



 

190 



 

191 



 

192 

  



 

193 



 

194 



 

195 



 

196 



 

197 



 

198 



 

199 



 

200 



 

201 



 

202 



 

203 



 

204 



 

205 



 

206 

 
 
 
 


