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Abstract

The epithelium segregates microorganisms from the immune system through tightly connected
cells. The epithelial barrier maintains the integrity of the body, and the microbiome influences
this through host-microbe interactions. Therefore its composition has an impact on the host's
physiological processes. Disruption in the microbiome composition leads to an impaired
epithelial layer. As a consequence, the cell-cell interactions between the epithelium and
immune cells will be altered, contributing to inflammation. In this thesis, | examined the
interconnectivity of the microbiome, epithelium and immune system in the gastrointestinal tract

focusing on the oral cavity and gut in healthy and diseased conditions.

I combined multi-omics data with network biology approaches to develop computational
pipelines to study host-microbe and cell-cell connections. | used network propagation
algorithms to reconstruct intracellular signalling and identify downstream pathways affected by
the altered microbiome composition or cell-cell connections. | studied inflammation-related
conditions in the oral cavity (periodontitis) and gut (inflammatory bowel disease (IBD)) to reveal
the contribution of interspecies and intercellular interactions to diseases. | inferred host-
microbe protein-protein interaction (HM-PPI) networks between healthy gum-/periodontitis-
related bacteria communities and epithelium, and found altered HM-PPIs during inflammation.
| connected the epithelial cells to dendritic cells and identified the Toll-like receptor (TLR)
pathway as a potential driver of the inflammation in diseased gingiva. While in the oral cavity |
focused on complex microbial communities and their impact on one cell type, | discovered the
direct effect of gut commensal bacteria on several immune cells in IBD. This study observed

the cell-specific effect of Bacteroides thetaiotaomicron on TLR signalling.

The pipelines | developed offer potentially interesting connections that aid detailed mechanistic
insight into the relationship between the microbiome, epithelial barrier and immune system.
These systems-level analysis tools facilitate the understanding of how microbial proteins may

be of therapeutic value in inflammatory diseases.
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Chapter 1: General introduction

1.1 Preface

Humans are colonised by complex microbial communities comprising viruses, archaea,
bacteria and eukaryotes. The composition of the microbiome has an impact on the host's
physiological processes, hence the communication between the microbe and host is crucial to
maintaining homeostasis. Accordingly, disruption in the community composition potentially
leads to increased inflammation and the pathogenesis of diseases, such as periodontitis in the
oral cavity or inflammatory bowel disease (IBD) in the gut "2. Currently, there are correlation-
based approaches to study the interplay between host processes and the microbiome (e.g.,
blood biomarkers *). These studies reveal significant associations between microbial taxa and
host factors, such as the level of cytokines **. The limitation is that this approach can not detect
the effect of microbial strains on host signalling at the molecular level due to the complexity

and cross-talk of biological processes.

This iCASE PhD scholarship was supported by Unilever, the industrial collaborator of the
project. Together, we aimed to provide mechanistic insights into the beneficial and harmful
effects of the healthy and unhealthy microbiota that facilitates the product design and improves
consumer experience, mitigates any negative effects and enhances the product use benefits
in the marketplace. | undertook a three months internship at the company, where | further built
my research and personal skills and competencies. | participated in meetings with my industrial
supervisor and her team extending my knowledge about metabolic models and network
modellings. The internship contributed to my personal qualities by working in a professional
industrial environment and practising presentation/communication and time management
skills. The project's output for Unilever covered a methodology development (Chapter 3) and

a case study by analysing public data from the oral cavity (Chapter 5).

This introductory chapter explores the background theories and literature relating to the current
knowledge about the human microbiome and its interaction with the host. Chapter 2 and 3
present interdisciplinary workflows developed by myself and colleagues to study intercellular
and host-microbe interactions and their downstream effect on host cellular processes. The
following two chapters (Chapters 4 and 5) demonstrate these workflows with case studies.
Chapter 4 is a case study for the host-microbe interaction pipeline analysing single-cell

transcriptomic data and proteomic profiling of bacterial extracellular vesicles. This study
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focuses on the effect of Bacteroides thetaiotaomicron (Bt) BEVs on immune cells in the healthy
and inflamed colon. Chapter 5 combines the developed pipelines to analyse connections
between the gingival microbiome and epithelium and cell-cell communication between
epithelial and immune cells in healthy and periodontal conditions. Finally, Chapter 6 discusses
overall conclusions of the thesis and gives future directions. The general structure of the thesis

is presented in Figure 1.1 and Table 1.1.

, Molecular databases
High th htput dat:
igh throughtput data OmniPath

/\ (Chapier 2)

Proteomi Transcriptomics
Resources Dieomics ) P Cell type- and condition-specific
Single-cell data == = = m= = gene expression -(-’

Tissue- and cell line-specific

Bulk data  — }
gene expression | s

Multi-omics data analysis

* |

Methodol in silico host-microbe . Interspecies and intercellular
ethodology  , otein-protein interaction = Gene set analysis = network modelling

predictions

(Chapter 3) ‘ '

Research focus

(-----J

Gut ; Oral cavity
Healthy vs. Ulcerative Colitis E Healthy vs. Periodontitis
Microbiome
WOl
Epithelium
Immune and @
stromal cells

=)

Chapter Chapter 2 Chapter 4 : Chapter 5

Interspecies

A interaction
@ Regulatory @ Monocyte Dendritic cell Macrophage /") Goblet cell Myofibroblast
T cell \V/ Intercellular

interaction

Figure 1.1: Overall view of the PhD project. | highlighted those resources and methods that | carried
out by myself.
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Table 1.1: Summary of the thesis
Chapter Type of the interaction | Object Aim of the project
Chapter 2 Intercellular interaction Myofibroblasts - regulatory T Rewiring of stromal and immune
cells cell interactions in UC

Chapter 4 Microbe - host interaction | Bt - immune cells Role of Bt BEVs on immune cells
focusing on the TLR pathway in
healthy and UC conditions

Chapter 5 Microbe - host interaction | Microbiota - epithelial cells Understanding the effect of
healthy and periodontitis-related
microbiome composition on
epithelial cell signalling

Chapter 5 Intercellular interaction Epithelial cells - dendritic cells | Effect of disturbed epithelial
signalling on DCs during severe
periodontitis

1.2 Gastrointestinal tract

The gastrointestinal tract (Gl tract) involves organs of the digestive system between the oral

cavity and anus. The human Gl tract is approximately 7m long, and its total surface is around

300 m? with multiple levels of invaginations °. This structure facilitates the main functions of

the Gl tract - digestion and nutrient absorption - but as later chapters will introduce, immune

homeostasis maintenance is also among its main objectives ®’. Maintaining this balance of

defending against pathogenic organisms and ensuring the commensals' environment is

challenging. However, epithelial barriers via tightly connected cells, secreted antimicrobial

peptides and specialised immune responses enhance this defence mechanism .

In the thesis, | observed the disrupted homeostatic functions of the epithelial layer in the oral

cavity and the gut; therefore the following two sub-chapters introduce their anatomical

structures and highlight the crucial cell types which are exposed to external stimuli (i.e.,

intercellular or interspecies interactions).
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1.2.1 Oral cavity

The oral cavity is the entrance to the digestive system, including lips, buccal mucosa, tongue,
gingiva, teeth, hard palate, retromolar trigone (area behind wisdom teeth) and salivary glands
8, The gingiva surrounds and protects the teeth; it is covered with a layer of stratified squamous
epithelium, which acts as the first barrier of defence against pathogens. This layer consists of
keratinocyte stem cells (1-10%), transit-amplifying cells (~50%) and postmitotic differentiating
cells in early-stage keratinisation (~40%) °. The epithelial cells establish three layers: junctional

epithelium (JE), oral sulcular epithelium (OSE) and gingival epithelium (GE) ° [Figure 1.2].

The non-keratinized JE lies at the base of the gingival sulcus. It is directly connected with the
tooth surface by several intercellular interactions (e.g. hemidesmosomes, desmosomes,
adherens junctions, and gap junctions). Here, the cells are flat with loose cellular junctions,
abundant in organelles and have large nuclei ''. By expressing cytokines and chemokines, JE

can indirectly control the microbes through recruiting immune cells '>*® [Figure 1.2].

OSE is an intermediate area between the junctional and gingival epithelium. OSE and JE
interact with the subgingival microbiome; hence, they play a crucial role in the immune

response'* [Figure 1.2].

GE is the keratinised external layer of the gingiva '. In contrast to the JE, cells in the GE are
tightly arranged polygons with less intercellular space and round nuclei in the centre ''. |
focused on JE and OSE in the thesis because GE is not in direct contact with the subgingival

microbiome [Figure 1.2].
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Periodontal health Periodontal disease

Gingival sulcus

Gingival sulcus

Homeostatic
inflammation

Severe
inflammation

Gingival sulcus Gingival sulcus

Junctional Epithelium thickness Junctional Epithelium thickness
Commensal microbes Commensal microbes

Pathogenes/Bacterial toxins Pathogenes/Bacterial toxins

NNV AA

Inflammation Inflammation

Figure 1.2: Gingiva in periodontal health and disease conditions. GE - gingival epithelium, OSE -
oral sulcular epithelium, JE - junctional epithelium. Commensal bacteria are highlighted by green while
pathogens appear by red colour. The figure was drawn by myself.

1.2.2 Intestine

The intestinal tract has two main sections: the small intestine and the large intestine. It consists
of cells deriving from three main cell lines - epithelial, immune and stromal cells - organised in
four layers: mucosa, submucosa, muscularis and serosa. The mucosa involves the epithelial
layer, lamina propria and muscularis mucosae - a thin muscular layer. The submucosa is
mainly a thick connective tissue layer with blood and lymph vessels, and neurons of the enteric
nervous system. Muscularis is a thick layer of smooth muscle, while serosa (or visceral

peritoneum) is the outer layer surrounding the gut °.
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Small intestine and colon differ at many points regarding their structure and cell types. In the
thesis | worked with gene expression data of colon cells, therefore this part of the intestine is
in the centre of the thesis. Following the small intestine where the enzymatic digestion of the
food takes place, the colon absorbs the remaining water and ions. Here, the digestion is slower
and commensal microbes are responsible for it instead of enzymes. Regarding its anatomical
structure, the colon lacks in microvilli, is enriched in Goblet cells and decreased in Paneth

cells, and also includes deeper crypts compared to the small intestine.

| focus primarily on the epithelial and secondarily on the immune cells in the colon, therefore,

I would like to introduce the common cell types in the epithelial layer and the immune system.

Epithelial cells

Epithelial cells build up the mucosal layer, which serves as a physical barrier, and they defend
against pathogens and secrete and absorb molecules. In the intestine, to increase the surface
area for absorption, the intestine developed Lieberkihn-crypts, which are fold-like
invaginations of the epithelium '”. While the crypts are more expressed in the small intestine,
in the colon these structures are less deep and include tubular pits, which increase in depth

towards the rectum 8.

Intestinal stem cells (ISC) are multipotent adult stem cells capable of renewing themselves and
differentiating into a limited number of gut cells. There are around six ISCs at the bottom of
each Lieberkuhn-crypt. The connection of ISCs with other epithelial and mesenchymal cells
subserve the homeostatic behaviour '°. Stem cells can renew themselves by an active Wnt
signalling pathway. Through the Notch pathway, these multipotent cells can also differentiate
into short-living transit-amplifying cells that are rapidly proliferating - but not differentiating -
cells with a limited number of cell cycles %° [Figure 1.3]. Alteration of the WNT and Notch
pathways can lead to the malfunction of differentiation causing diseases, such as cancer ?' or

inflammatory bowel disease (IBD) %.

Short-living transit-amplifying cells differentiate into progenitor cells that are also multipotent.
However, these progenitors quickly differentiate further to more specialised cell types. In the
intestine, there are two types of progenitor lineages: absorptive and secretory. These lineages
determine two main cell types. Absorptive cells (enterocytes) require an active Notch pathway
in the progenitors, while in secretory progenitors (producing goblet, enteroendocrine and tuft

cells), the WNT pathway is triggered #* [Figure 1.3].
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Absorptive cells

Enterocytes, the most common cell type in the intestinal epithelium, build up a polarised
monolayer with tight cell-cell adhesive interactions [Figure 1.3]. Their function is related mainly
to absorption - microvilli on the apical surface increase their membrane surface -but they also
play an essential role in host-microbe interactions 2°2°. As part of the intestinal epithelium,
enterocytes can establish a direct connection with the microbiome, such as detoxifying
bacterial toxins ?’. During inflammation, their junctional interactions are disturbed, leading to

an impaired barrier function 2.

Secretory cells

The bottle-shaped tuft cell is a rare cell type in the intestinal epithelium. It has characteristic
microvilli at its apical side. Tuft cells are also connected to the nervous system by expressing
acetylcholine °. Although their functions are less studied, they regulate intestinal epithelial cell
response to injury. While these cells have been connected to inflammation-related diseases,
their role in inflammation remains unclear. Experiments in mice show that the marker receptor

- Dclk1- mediates epithelial repair responses, a process that dysfunctions during induced colitis
30,31

Enteroendocrine cells are part of the secretory system containing either large dense-core
vesicles or smaller synaptic-like microvesicles *2. They secrete a wide range of peptide
hormones, but also sense microbial metabolites and release cytokines in response *.
Duodenum and terminal ileum express the most enteroendocrine cells, and studies show that

these cells are strongly affected during Crohn’s disease **.

Goblet cells derive from the secretory progenitor cells and undergo a maturation process.
Therefore mature and immature forms can be distinguished. While immature cells are placed
in the middle part of the crypt and the vesicle system is less developed, the mature goblet cells
are at the top of the crypts. They secrete mucin, antimicrobial proteins, chemokines and
cytokines to strengthen the barrier between the gut lumen and epithelial surface 2%%5% [Figure
1.3]. Interestingly, in colon not only the number of these cells is increased but also the epithelial
layer is covered by a two-layered mucin layer ¥. Several studies support that goblet cells are
affected in IBD. For example, in ulcerative colitis, the number of these cells is often reduced.
It is still a question whether there is an impaired differentiation or apoptosis is increased in the

mature/immature cells %2.
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M cells are the direct neighbours of enterocytes in both small and large intestines. The cells
are specialised epithelial cells with several characteristic features, such as a lack of apical
microvilli and the appearance of a basolateral pocket that usually contains a B lymphocyte.
However, T cells and myeloid cells may also be present [Figure 1.3]. This connection with the
immune system shows the contribution of these cells to normal immune surveillance *. The
primary role of M cells is to deliver microbial antigens to gut-associated lymphoid tissue for
efficient mucosal and systemic immune responses *°. M cells’ behaviour depends on cytokine
molecules that also influence inflammation in the gut, hence the role of these cells is significant
in IBD %,

Immune cells

The immune system is outstandingly important in the gut to maintain the homeostatic state.
Several factors are responsible for normal immunity, including the gut microbiome with high
priority *'. Similarly to the epithelial cells, immune cells also derive from a multipotent stem cell
- called hematopoietic stem cell. Progenitor cells determine the myeloid and lymphoid cell lines:
differentiated myeloid cells are in the blood while lymphoid cells mediate the production of

immunity *2.

Myeloid cells

Monocytes derive from myeloblast cells and can differentiate into macrophage and dendritic
cell subpopulations in the blood. During inflammation, monocytes go through the endothelial
cells and differentiate into anti- and pro-inflammatory macrophage subsets in the tissue.
Macrophages are heterogeneous cells rapidly adapting to the changes in the

microenvironment #?

. Besides their main phagocytic activity, as a professional antigen-
presenting cell type (APC), macrophages also play a role in the maintenance of T cell

subpopulations, clearance of apoptotic cells, and maintenance of epithelial barrier integrity +*.

Dendritic cells’ (DCs') main role is in T cell response via their APC activity. Classical DCs are
divided into two subsets: DC1 has CD8a+ and CD103+ on their surface while DC2s are
characterised by CD11b+ and CD172a+ ***5, Experiments show that in the inflamed intestine,
the number of CD103+ DC1 cells is reduced. Based on studies, intestinal inflammation causes

the malfunction of DCs that leads to dysregulated T cell responses and tissue damage “°.
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Lymphoid cells

B cells are a core part of the adaptive immune system. Antigen-activated B cell receptors
(BCRs) initiate B cell differentiation to plasma cells. Beside the adaptive immune response, B
cells are professional APCs and contribute to effector T-cell activation. Not surprisingly, B cells
show abnormalities in inflammatory diseases, including the aberrant expression or function of
key signalling molecules and cytokines, as well as perturbations in the development of B cell

subsets *’.

Similarly to B cells, T cells are also a key part of the adaptive immune response. Intestinal T

cells have two subgroups, conventional and non-conventional T cells. Conventional T cells

derive from CD4-CD8- progenitors in the thymus and develop into CD4* or CD8" T cells. These

cells subsequently migrate to peripheral lymphoid organs, such as lymph nodes, where they
encounter antigens and acquire an activated effector phenotype that drives their migration to
the gut. CD4" helper T cells have a CD4 glycoprotein at their surface. They become activated
by binding the MHC Il complex expressed on the surface of APCs and through rapid
proliferation, they differentiate into several subpopulations (Th1, Th2, Th17, and Treg). In
contrast, CD8" cytotoxic T cells recognise a short part of the MHC | complex leading to cytokine
expression and apoptosis triggering “¢*°. In IBD, patients have normal amounts of CD4" T cells
and CD8" T cells, however, their activation is different to the normal condition *°. It manifests
in an increased expression of major lymphocyte activation antigens, such as interleukin-2

receptor, transferrin receptor and 4F2, on the cell surface 5'.

Innate lymphoid cells (ILCs) are a heterogeneous group of immune cells dividing into five main
groups: ILC1, ILC2, ILC3, natural killer (NK) and lymphocyte tissue-inducer cells *2. Without
their antigen receptors, they sense the changes in the environment by cytokine receptors. In
the intestinal mucosa, ILCs block pathogen infection by secreting IFN-gamma but also promote

IBD and cancer through IFN-y, IL-17 and IL-22 expression *3.

In contrast to CD8" T cells, NK cells do not require antigen presentation for cytokine secretion.
However, they also have a cytolytic function that destroys the target cell °. In the intestinal
tract, NK cells can trigger inflammation through several signalling pathways (e.g. Toll-like
receptor (TLR) signalling) *°. During intestinal inflammation, NK cell-related cytokine secretion

is increased *°.
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Stromal cells

Intestinal stromal cells are part of the mesenchymal compartment. The stromal cells
(fibroblasts, myofibroblasts, pericytes, endothelial cells, and smooth muscle cells) are
connected to the epithelial and immune cells. These cells have common characteristics such
as abundant collagen production, expression of vimentin and a-smooth muscle actin filaments,
and a lack of surface CD45 expression *. Evidence shows that stromal cells are strongly

influenced by intestinal inflammation 2.

Fibroblasts are localised close to the basolateral surface of epithelial cells *° [Figure 1.3]. These
cells are responsible for establishing the extracellular matrix by secreting collagen and
fibronectin molecules. Fibrosis is a well-known complication of intestinal inflammation caused
by mesenchymal cells, such as fibroblasts, that secrete an immoderate amount of extracellular

matrix ©°.

Myofibroblasts are subepithelial cells in the intestine sharing features of fibroblasts and smooth
muscle cells *°. Mifflin et al. described strict criteria of being a myofibroblast; based on their
definition, myofibroblasts are ‘spindle-shaped or stellate cells that are a-SMA positive, vimentin
positive, smooth muscle myosin negative but non-smooth muscle myosin positive, fibronectin

61

positive, and very weakly positive or negative for desmin’ °'. Myofibroblasts are also

responsible for fibrosis during intestinal inflammation ©2.
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Figure 1.3: Lieberkiihn-crypts in the healthy and inflamed colon focusing on cell types analysed
in the thesis. In healthy condition, intestinal epithelial cells establish a tightly connected barrier and the
differentiated cells secrete mucus and antimicrobial peptides to inhibit the direct interaction between
pathogens and the host immune system. In contrast, the continuous layer is disrupted during
inflammation which allows microbes to reach immune cells and lead to cytokine secretion. | modified
the original figure drawn by Isabella Hautefort, member of our research group.
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1.3 The human microbiome

Around 38 * 10" microorganisms inhabit our tissues and organs, while a human adult body
consists of 30 * 10" cells %4, It was estimated in 2012 that there were approximately 10,000
different bacterial species that made up the human microbiome (source:
https://www.nih.gov/news-events/news-releases/nih-human-microbiome-project-defines-

normal-bacterial-makeup-body). However, the exact number of strains is difficult to determine
as it's constantly changing and varies from person to person. The number of genes expressed
in the human microbiome is estimated to be around 246 millions (source:
https://microbiomepost.com/how-many-genes-make-up-the-human-microbiome/). A study
from 2010 has shown that the genetic diversity of the microbiome is much greater than that of
the human genome, with the estimated number of microbial genes in the human body being
around 150 times greater than the number of human genes ®°. Due to the development of

omics technology, this number is probably much higher currently.

The composition of the microbiome differs between organs/tissues and also between
individuals as these living communities have adapted to distinct environments . The Human
Microbiome Project was the first interdisciplinary effort to describe microbial communities,
initially analysing samples from 300 healthy adults, including 18 body sites ®. The appearance
of omics data [details in section 1.6] boosted individual microbiome analysis that has extended

our knowledge about the communities.

The most diverse microbial communities inhibit the gut, oral cavity and skin %¢5667:68¢6 The gkin
is our largest organ therefore the microbiome composition has an essential role to defend
against pathogens and the maintain homeostasis of skin cells ®°. Around 1000 bacteria species
inhabit the skin besides fungi, archaea, viruses, and mites are also represented in the
community "°. The diversity and composition of the skin microbiome can vary greatly
depending on factors such as age, genetics, diet, and environment. While in the gut the
microbiome stabilises around 3 years of age ’', the microbial community of the skin changes
during time, especially during puberty when lipophilic organisms are enriched on the skin °°.
As Unilever is interested in the effect of the microbiome on scalp, | investigated the scalp
microbiome in more detail, although due to confidential reasons, the thesis doesn’t include
data analysis related to this microbiome - tissue interactions. The scalp microbiome is less
discovered; currently, there are 89 articles related to the ‘scalp microbiome’ keywords in
PubMed (September 2022). The community of microorganisms differs on the scalp compared

to the skin. The microbiome of the skin is more affected by the different external factors like
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moist, dry and sebaceous microenvironments %. On the scalp, then microbiome diversity is
lower and mainly the Malassezia, and Propionibacterium and Staphylococcus taxa are

enriched %73,

The gut microbiome is currently a hot topic in the research since the appearance of meta-
omics data [details in Chapter 1.6.2]. While in 2013 the literature described around 300 to 500
bacterial species ", a study published in 2019 described around 8000 strains "°. The gut
microbiota is a complex community of commensal bacteria, fungi, and viruses in the human
intestinal system. The composition of the microbiome is influenced by many environmental
factors (e.g. diet or use of antibiotics) . In the past years, the definition of the ‘core’ gut
microbiome has been changed: while earlier the core community was defined by microbial taxa
which overlap among people, currently, researchers believe that the core microbiome could
be defined by genes and/or metabolic capabilities that can be explored by meta-omic data
[details in Chapter 1.6.2]. The disturbance of the core microbiome leads to changed regulation

of host cellular processes .

The oral microbiome is the second-largest microbiome in humans, containing a complex
community of a vast spectrum of species from bacterial, viral, fungal and protozoan taxa. As
an open community, it does not have a permanent structure because there are several factors
which influence its composition, such as food or the condition of teeth ®8. While in 2010 around
600 species were known in the oral cavity "8, currently ~ 700 species have been described as
a result of the omic data revolution ® [details in Chapter 1.6]. Around 96% of the species
belongs to the phyla of Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria,

Bacteroidetes, and Spirochaetes in the Bacteria domain "%,

Healthy microbiota - consisting of microbes that colonise the host in normal circumstances and
do not usually cause disease - is important for maintaining homeostasis. Disruption of the
microorganism communities leads to dysbiosis when the equilibrium state of commensal and
harmful pathogens is disturbed '. Therefore dysbiosis is not necessarily associated with the
appearance of new pathogens, in most cases, there are disease-associated bacteria with an
increased abundance compared to the healthy condition 8. There are several factors that can
contribute to dysbiosis, including poor diet, antibiotic use, chronic stress, and exposure to
toxins or pollutants. Dysbiosis is also seen in certain medical conditions such as diabetes,

autoimmune diseases, and cancer .
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When the balance of beneficial and harmful bacteria is disrupted, this can lead to inflammation
in the gut. The gut microbiome plays a key role in maintaining the integrity of the gut lining and
regulating the immune response, so when the balance is disrupted, it can lead to an overactive
immune response and inflammation through altered signalling pathways ®. Inflammation in the
gut can also lead to dysbiosis, as the inflammatory response can damage the epithelial layer
and alter the environment for the gut microbiome. This can make it difficult for beneficial
bacteria to survive and thrive, while allowing harmful bacteria to overgrow 3. Dysbiosis has
been linked to various inflammatory conditions such as inflammatory bowel disease (IBD),
autoimmune diseases, allergies, and metabolic disorders. Anti-inflammatory diet and some

probiotics can help to reduce inflammation and restore the balance of the gut microbiome .

A dysbiotic community is usually characterised by a reduced diversity of the microbiome, this
has been associated with many diseases, such as IBD in the gut, periodontitis affecting the
gingiva or eczema on the skin . Interestingly, while the number of taxa is decreased during
dysbiosis, the variability of microbes is increased ®’. As the ‘Anna Karenina principle’ says,
healthy microbiomes are similar to each other while the disease associated microbiomes differ
from each other 8% Another assumption is that the dysbiosis potentially causes dysanaerobic
processes based on the oxygen hypothesis. This rule is based on the observation that in the
dysbiotic intestinal microbiome, the obligate anaerobic taxa are shifted to facultative anaerobic

species %.

In the gut, a dysbiotic microbiome may be characterised by (1) an overgrowth of pathogenic
bacteria such as Escherichia coli, Clostridium difficile, or Salmonella *'; (2) a decrease in the
abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium %; (3) an increase
in the ratio of Firmicutes to Bacteroidetes, this ratio is usually associated with obesity and
metabolic disorders *3; (4) an increase in proinflammatory bacteria and a decrease in anti-

inflammatory bacteria .

Microbiologists distinguish two groups of bacteria based on the membrane structure: Gram-
positive bacteria consist of a thick peptidoglycan layer and periplasm %. In contrast, the cell
wall in Gram-negative bacteria has three layers: the outer membrane, peptidoglycan layer and
periplasm %. The diverse outer coat infers an altered communication with the host cells and
tissues. Although microbes in both categories can produce small, nano-sized extracellular
vesicles to transport bioactive molecules to the host cells, the composition differs between
them. Gram-negative bacteria secreted vesicles consist of lipopolysaccharide (LPS), in

contrast, Gram-positive vesicles contain lipoteichoic acid ¥ [for details, see Chapter 4].
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The gastrointestinal tract is exposed to several factors, such as diet or smoking that have an
impact on tissue homeostasis. Therefore, the microbiome has a crucial role in the maintenance
of physiological conditions "%, In general, studies analyse the oral cavity and gut separately,
however, they are not only linked physically but also share microbes. The ‘oral — gut
microbiome axis’ expression describes the oral-to-gut and faecal-to-oral translocation of
microbes %. In healthy condition, the overlap is less between the communities due to functional
barriers, such as gastric acid or bile. Nevertheless, an impaired oral-gut barrier leads to the
translocation of microbes and contributes to a diseased condition ®. Further details about the

gut and oral microbiome are described in Chapter 4 and Chapter 5.

1.4 External signals affecting the epithelium

The tightly connected epithelium is exposed to both host cell factors and the microbiome,
therefore intercellular (cell-cell) and interspecies (cell-microbe) interactions are crucial in the

epithelial layer %1%,

1.4.1 Cell-cell interactions

Cell-cell interactions are essential for growing and differentiating multicellular organisms by
transducing the signal from cell to cell '°". These interactions are specific and highly regulated
due to their significant impact on physiological processes '%2. Disruption of the intercellular
interactions affects the homeostatic processes and leads to diseases. Understanding the
mechanisms of cell-cell interactions is crucial to the development of new therapies and
treatments for a wide range of medical conditions . Despite its importance, the molecular
background is less well described due to the lack of data. With the increasing amount of high-
throughput data (genomics, transcriptomics, proteomics, etc - details in Chapter 1.6) available,
bioinformatics tools such as network analysis, machine learning and computational modelling

can be used to infer cell-cell interactions "%,
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NicheNet "° is a computational tool, available as an R package, to model cell-cell
communication. It uses network-based approaches to identify key players in a particular
pathway or biological process, based on the analysis of large-scale genomic and proteomic
data. The core of the algorithm is based on the principle that genes that are functionally related
tend to be co-expressed or co-regulated, meaning that they are often active at the same time
and in the same tissue or cell type. NicheNet uses this principle to identify functional
relationships between genes by analysing patterns of co-expression in various experimental
data sets such as gene expression microarrays, RNA-seq, or proteomics data. It requires
ligand—receptor, signalling and gene regulatory networks as input then infers a weighted
network prioritising source cells based on their ligands’ effect on target cell gene expression.
NicheNet was the first pipeline which explored the downstream response in the target cell. Like
any computational tool, NicheNet has certain limitations that should be considered when
interpreting the results: (1) the quality and quantity of the input data can greatly affect the
accuracy and reliability of the results; (2) the results are specific to the biological context in
which the analysis is performed, meaning that the predictions may not be valid in other contexts
or cell types; (3) as the predictions made by NicheNet are based on statistical association,
there is a risk of false positives, meaning that some interactions or functional relationships
predicted by the algorithm may not be biologically relevant; (4) NicheNet does not provide
information about the directionality of these interactions, meaning that it cannot distinguish

between activating and inhibitory interactions "%,

CellphoneDB """ is a computational tool that predicts ligand-receptor interactions by analysing
the structural and functional properties of proteins. The tool uses a structural alignment method
to identify similar binding pockets in proteins, which are then used to predict potential ligand-
receptor interactions. It also uses functional annotation information, such as gene ontology
terms and enzyme commission numbers, to identify proteins that are likely to be involved in
similar biological processes and therefore more likely to interact. The predictions are ranked
based on the basis of their total number of significant P values across the cell populations "'".
The main limitations of the tool are that (1) it does not include all of the possible ligand-receptor
interactions, therefore analysing cell-cell interactions can be misleading; (2) the statistical
method that calculates p-values and ranks the interactions is based on the Importance of the
PPI in the downstream signalling in the target cell, therefore a non-significant interaction does
not mean that the LRI is not present, but it is not highly specific between the source and target

cells ',
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LIANA (Ligand-receptor Analysis frAmework) ' is a bioinformatics tool for the analysis of
ligand-receptor interactions. It integrates 16 intercellular resources and 7 methods (including
CellphoneDB) to analyse large-scale genomic and proteomic data and infer ligand-receptor
interactions from it. The algorithm combines different scores to rank the intercellular
interactions with the Robust Rank Aggregation algorithm ''* Compared to NicheNet that
analyse intercellular interactions and their downstream effect, LIANA is specialised to PPIs
between cells. Nevertheless, the two approaches are not mutually exclusive, these tools

discover cell-cell interactions from different points of view %,

In the thesis, | distinguished two major cell-cell interaction types while exploring intercellular
interactions: cell-cell junctions and cell-cell communication through ligand-receptor
interactions. While junctional interactions support a structural and physical cell-cell interaction,
ligand binding to the complementary receptor triggers signal spreading through the cell

mediating intercellular communication '** [Figure 1.4].

Structural cell-cell junctions

Adhesive cell-cell interactions are mediated by adherens junctions, gap junctions, tight
junctions and desmosomes %°: Adherens junctions (Ajs) are essential in the development and
tissue homeostasis, cells are connected through molecules which are anchored to actin
filaments in the cytoplasm [Figure 1.4]. Ajs help to polarise the epithelial cells and distinguish
the apical and basolateral membranes, besides these molecular complexes link the adjacent
cells tightly in the intestinal epithelium, therefore, ensuring its barrier function '°°''®, Impaired
Ajs, which cause incompletely polarised epithelial cells, characterise both CD and UC

conditions 6.

Tight junctions (TJs) bind cells only in epithelium and endothelium [Figure 1.4] and give polarity
to the cells by separating the upper and lower part. In contrast to Ajs, this junctional complex
contributes to a semipermeable barrier through that small molecules (ions, solutes) can pass.
TJ complexes control proliferation and differentiation. Disruption of these intercellular
structures causes impaired barrier function and enhanced inflammatory cytokine secretion,

leading to inflammation-associated diseases %1%,
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Gap junctions (GJs) are essential for growing, developing and maintaining homeostatic
functions. Molecules establishing GJs — called connexins — are transmembrane proteins
appearing in clusters and facilitate the nutrient and solute passing into the intercellular space
[Figure 1.4]. During intestinal inflammation, connexin expression is reduced and re-organised
from the apical side to the basolateral membrane. These findings suggest a hypothesis that

intercellular communication is more intense between epithelial cells

Desmosomes provide mechanical connections between cells rather than controlling the solute
transport ®. In the cytoplasm, intermediate filaments bind to the cell surface part of the
molecular complex through desmoplakin — an intermediate filament binding protein ''8. Altered
desmosome structures contribute to the IBD pathology affecting the integrity of the epithelium
during intestinal inflammation '°. Hemidesmosomes look like half a desmosomes and also
facilitate cell adhesion, however, these multiprotein complexes mediate interactions between

the cells and the basal cell membrane in contrast to desmosomes [Figure 1.4].

Ligand-receptor interaction
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Figure 1.4: Intercellular interactions between epithelial cells. Tight junctions, gap junctions,
adherens junctions and (hemi)desmosomes represent the structural connections, while ion channels,
transporters and ligand-receptor interactions contribute to the cell-to-cell communication. JAMs —
Junctional adhesion molecules. The figure was drawn by myself.
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Intercellular communication by ligand-receptor interactions

Ligand-receptor interactions (LRIs) constitute a significant class of intercellular interactions
where the source ligand (small molecule, short DNA/RNA or protein) is recognised by a
receptor protein. During my PhD, | analysed protein-protein interactions that are the most
complex LRIs. The distance is large between molecules; besides, precise orientation and
strong physical binding are needed between the molecules '®. The connection between a
ligand and receptor is based on precise pattern recognition, and selective molecule binding
that triggers downstream activation of protein cascades. It was known decades ago that
competition is also essential in terms of LRIs because one receptor can bind multiple ligands
121 Binding affinity determines the strength of the ligand-receptor connection, therefore, a low-

affinity interaction can be replaced in the presence of a high-affinity link '2.

Ligands and receptors are upstream in the signalling pathways, thus their expression shows
more cell specificity than intracellular proteins '?®. Impaired LRIs cause altered downstream
signalling paths but as a potentially severe consequence leads to activation of other

signalisation events 2412,

Although intercellular protein-protein interactions (PPIs) play an essential role in cellular
behaviour, cell-cell connections were less studied till the early 2000s. The limitations were on
the one hand technical — no data about individual cells — on the other hand, there was no
integrated database that included information about intercellular components and their

interactions.

1.4.2 Host-microbe interactions

Host-associated microbial communities are in continuous interaction with the host cells.
Modulation of host processes is required for homeostasis '?°. However, these interspecies
interactions have evolved. Microorganisms have adapted to their host and mimic the structure,
sequence, motif and interface of many host proteins, facilitating host-microbe interactions

(HMIs) and increasing their influence on host processes '27'%8,

Proteins do not have a rigid structure, their binding sites are dynamic and shared by various
interaction partners. Even the same target protein can mediate diverse downstream signalling
events based on their actual binding partner '°. This molecular evolutionary strategy leads to

competition with host proteins. Generally, a microbe’s purpose is to benefit from the
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interaction with the host (e.g., by hijacking or evading the immune system), therefore,
molecular mimicry is commonly used for immune system-related signalling receptors 27128,
Franzosa and Xia introduced the term ‘evolutionary arms race’, which means microbes mimic
the host proteins, and these target structures evolve to avoid interaction with specific

microorganisms ',

Regarding the effect of bacteria in host signalling, these microorganisms can secrete ligands
recognised by host receptors . Scientists have demonstrated that studying these secreted

molecules can help us understand diseases and design drugs ">''%3,

In recent years, the appearance of high-throughput experiments has led to increased
knowledge about human HMIs, and more and more studies have included experimental
evidence on molecular mechanisms in HMIs '2¢1313° The challenge in this field is to analyse
large microbial community data and discover the collective effect of the microbes on cell type

levels in humans.

1.5 Molecular background of inflammation

Inflammation is triggered by several infectious (e.g., pathogenic organisms) and non-infectious
factors (damaged cells, toxins, burn, etc.). These components lead to tissue damage or
diseases in the human body. Although inflammatory response depends on the type of the initial
factor and the location in the body, the key events are similar: Firstly, receptors on the cell
surfaces or in the cytoplasm sense the stimulus. Triggered receptors lead to the activation of
inflammatory pathways. As a result, the transcriptional program of the cells is changed, and
the expressed inflammatory markers (e.g. cytokines, chemokines) facilitate inflammatory cell

recruitment '4°.
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1.5.1 Cytokine secretion

Cytokines are small molecules (<40 kDa) secreted by various cell types (epithelial, immune
and also fibroblast cells), playing an essential role in immune response '*'. Cytokines can
stimulate each other, but there are also inhibitory relationships among them to suppress
positive feedback loops of the inflammatory chemokines. The seriousness of diseases is often

associated with the inflammation-activated cytokine storm 41142,

There are two main groups of cytokines: pro-inflammatory and anti-inflammatory molecules.
Proinflammatory cytokines facilitate the inflammatory processes therefore contributing to
inflammatory diseases. Conversely, anti-inflammatory cytokines suppress inflammation by
responding to the effect of pro-inflammatory molecules . While the definition of the two
groups is self-explanatory, many cytokines, such as IL-6 or IL-8, have anti- and pro-
inflammatory effects depending on the environment (e.g. location, nearby cytokines) .
Cytokines expose their effect by binding to cytokine receptors, emphasising the importance of

intercellular communication in immune response .

The importance of cytokines in oral health is a well-studied topic. In the saliva, several types
of these small molecules (e.g. IL-1B) are in contact with the oral mucosa and gingiva "*°.
Microbiome shift contributes to the imbalanced cytokine expression and leads to periodontal
diseases "'. Studies show that the cytokine expression profile differs in gingival inflammation:
IL-1B, IL-6, IL-33 and IL-18 are upregulated *®'%°, while IL-11 (anti-inflammatory cytokine)/IL-
17 (pro-inflammatory cytokine) ratio is significantly decreasing "' suggesting the importance

of pro-inflammatory cytokines in the disease.
The gut also responds with a disturbed cytokine secretion profile to the dysbiotic state. Figure

1.5 compares these patterns in the healthy and diseased intestines through the example of

pathogen-associated inflammation.
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1.5.2 Pathogen-associated inflammation

Ligand-receptor interactions are essential in infectious factor-activated innate immune
response. This intercellular communication is established between pathogen-associated
molecular pattern (PAMP) carrying molecules (glycans, bacterial proteins, nucleic acids) and
pattern recognition receptors (PRRs). LPS is one of the most popular Gram-negative bacteria
secreted glycan that contains short, conserved PAMPs. PPRs are expressed by innate
immune system-related cell types, including epithelial and immune cells 2. These receptors
are either on the cell surface, such as some Toll-like receptors (TLR1, TLR2, TLR4, TLRS5,
TLR6, TLR11), NOD-like receptors (NLRs), RIG-like receptors (RLRs) and C-type lectin
receptors (CLRs) ', or intracellular (TLR3, TLR7, TLR8, TLR9) "

As a first step of the pathogen-associated inflammation, pathogens cause the contraction of
epithelial cells through their secreted endotoxins. Disrupted structural cell-cell interactions lead
to gaps on the cell layer that serve as an entrance for microbes to affect deeper tissue layers
and contact the immune cells '*°. The secreted pathogenic molecules reach the blood vessels
and burst the continuous endothelial layer. Endotoxins force the endothelial and immune cells
in the blood to express selectins. This family of cell adhesion molecules facilitates anchoring
cells to the endothelial layer. Gaps on the surface establish a direct connection between the

pathogen and immune cells due to the infiltration of immune cells into the tissue area "*°.

Professional APCs (DCs, macrophages and B cells) bind the foreign antigen and present it to
naive helper T cells (Th) - which have not met that specific antigen yet - through their MHC-II
complexes. Immature Th cells differentiate into diverse subpopulations based on the nature of
the presented antigen. While recognising commensal bacteria leads to increased amounts of
immunosuppressive cells (Th2, Treg), pathogens induce Th1 and Th17 cell expressions "’.
The immune system activator Th subsets express pro-inflammatory cytokines to attract CD8"
T cells. Cytotoxic T cells bind the MHC-I complex, appearing on every cell surface. The cells
on which this protein complex involves pathogenic antigens, CD8" T cells induce the apoptosis

of the infected cells '*® [Figure 1.5].

In summary, the intestinal epithelium is exposed to microbial attacks, therefore PPR-mediated
inflammation is outstandingly important in the cells, therefore almost every kind of PRR is
expressed by cells in the gut ™*°. Following the PRR activation, inflammatory signalling is
induced and leads to pro-inflammatory cytokine and chemokine secretion. The downstream

effect of PRR activation is to restore the damaged mucosal barrier '°.
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Figure 1.5: Immune response in healthy condition and during pathogen-associated
inflammation. The majority of immune cells secrete anti-inflammatory cytokines (highlighted by green)
in a homeostatic condition. In contrast, pathogen-derived endotoxins enhance the migration of immune
cells, including CD8+ T cells, a major member of immune system responsible for inflammation, from the
blood vessel into the tissue that leads to an increased pro-inflammatory cytokine expression (highlighted
by red). The naive helper T cells differentiate into diverse subpopulations depending on the signals.
While in healthy tissue Th2 and Tregs dominate, Th1 and Th17 cells are overrepresented during
pathogen-induced inflammation. This figure was inspired by the following articles 53157.160-164 and was
drawn by myself.
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In the following, | would like to introduce the TLR signalling in detail, because it has been

closely related to the projects in which | was working during the PhD.

TLR signalling is one of the innate immunity pathways recognising the extracellular pathogens
via PAMPs. Based on the manual curations in the SignaLink3 database, there are 203 proteins
involved in the TLR signalling excluding the regulators of the pathway '®°. Receptors and their
adaptor proteins (molecules that bind to signalling components resulting in protein complexes
instead of mediating specific PPIs) give the main characteristics of a signalling pathway which
determine the downstream protein activation. Regarding the TLR pathway, there are ten TLRs
(TLR1-10), and five TIR-domain-containing adaptors (MyD88, TRIF, TRAM, SARM, TIRAP)
1% in human with diverse functions and interaction partners. The receptors, as PRRs in
general, are expressed not only on antigen-presenting cells but also on most cell types in the
epithelium. In a normal condition, TLR signalling is less active due to decreased receptor and
increased receptor inhibitor expression '*°'". TLR pathway regulates both inflammatory and
anti-inflammatory responses, disruption of this balanced state results in dysregulated
inflammation or abnormal epithelial regeneration. Its main role is to control cytokine secretion,
therefore, influencing the appearance of regulatory T cell subpopulations. The impaired
signalling causes uncontrolled gastrointestinal inflammation. Studies show that PRR-related
gene mutations assist in the development of idiopathic IBD '%3'%°_ TLR signalling has a dual
role, it can activate inflammation in the gut but it is also responsible for stopping it and repairing
the epithelium in IBD ™°.

39



1.6 Omics data

Omics data and technologies are large high-throughput (HT) or large-scale assays that
measure different kinds of molecules from biological samples. Based on the examined
molecular object (highlighted in brackets) the main omics areas are: genomics (genome),
epigenomics (epigenome), transcriptomics (transcriptome), proteomics (proteome),
metabolomics (metabolome), microbiomics (microbiome), lipidomics (lipidome) '°. Since the
past decade, these large-scale datasets have been dominating the biological data generation
field, because omics data gives an insight into biological processes on a systems-level .
Single-omics data measures one molecular object (e.g. protein abundance or gene
expression) while multi-omics approaches cover not only data coming from the same samples
at the same time, but also describe the combination and integration of single-omics datasets.
Analysis of clinical samples by new technologies has expanded our knowledge about the

molecular background of a wide spectrum of disorders 2777

The advantage of omics data generation is that the complex set of information gives a more
precise and realistic insight into biological processes. However, it is difficult to store and handle
big data. Also, large-scale methods increase the false positive rate in datasets compared to
small-scale experiments 2. Not only the generation of omic data is challenging but also their
analysis. The appearance of a new data type always infers the development of new

computational pipelines 771797181,

1.6.1 Host omics data

Host omics data reveal the cellular processes from different aspects depending on the data
type. Genomics analyses the genome - the total amount of DNA in a cell - of the organism and
reveals functional information implied in the DNA sequence. It reveals genetic diversity and
genomic variation and can also highlight mutations in the nucleic acid sequence '®?. Based on
estimations, there are around 24,000 protein-coding genes overall in humans '8, but genetic
information differs among people. The reference genome is the standard DNA sequence that
derives from multiple donors and represents the pan-human genome '®. Researchers use this
standard to align and assemble genome sequence data. Due to the continuous improvement
of assembling techniques, the reference sequence has been updated with time. The most
current version is the GRCh38.p14 published by the Genome Reference Consortium in
February 2022 "%,
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Transcriptomics measures the total amount of RNA in cells and infers gene activities in the
organism. The two major approaches to discovering transcriptional profiles of tissues and cells
are microarray and RNA sequencing (RNAseq) techniques. Firstly the microarray assay was
invented in the 1990s, this technique is based on hybridisation to predefined transcripts. In
contrast, RNAseq can describe the whole transcriptome without prior assumptions of what
sequences are present '%®'®_ The identification of new transcripts and other advantages (such
as exploring allele-specific expression and splice junctions, independence from genome
annotation for prior probe selection) has meant that microarrays have been replaced by
RNAseq '?'.

Regarding the sequencing approach, there are two different approaches: bulk and single-cell
(sc) profiling. Bulk sequencing is a large-scale analysis of cell lines or tissues, it describes an
average expression of genes across thousands of cells. Its advantages are the cost-
effectiveness and the ability to reveal the altered molecular background of compared

conditions (e.g. healthy vs diseased).

Single-cell sequencing is a relatively new methodology, it was used first in 2009 on mouse
cells by Tang et al '®. This approach gives a high-resolution insight into the tissue composition
by detecting the RNA content of samples at the individual cell level. Based on the individual
gene expression profile, dimensionality reduction algorithms facilitate the clustering of cells
and use markers to distinguish cell subpopulations [Figure 1.6]. There are several existing
algorithms (such as UMAP ' t-SNE '° IsoMap ' or DiffusionMap %) that use different
approaches to reduce the dimensionality and facilitate the understanding of cell clusters

visualised on diagrams.
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Figure 1.6: Uniform manifold approximation and projection (UMAP) of cell clusters after cell type
identification using single-cell RNAseq data from the oral cavity. The figure has been created by Matthew
Madgwick processing a public dataset 3.

Single-cell approaches are becoming more popular in clinical research. In contrast to bulk RNA
analysis, it gives an insight into the cell type and condition-specific gene expression patterns
that enables biomedical researchers to better understand the molecular background of

disorders "%

[Figure 1.6]. Due to the complex analysis, data storage requires more space, and
computational analysis is more time-consuming than the bulk approach '®°. Details about

analysing single-cell transcriptomics are described in Chapters 2 and 3.

The level of detected transcripts does not always correlate with the amount of proteins in
samples due to translational regulation. The term ‘proteomics' was used first in 1995 to
describe the analysis of protein content in samples '%. Due to differences in gene expression
patterns, the set of proteins also differs between cells, conditions or individuals. The first step
of proteomic profiling is protein extraction from collected samples. Gel electrophoresis
facilitates the separation of proteins based on molecular mass and isoelectric points. The next
step includes the enzymatic digestion of proteins, the resulting peptides are analysed by mass
spectrometry (MS). MS is an essential tool to detect the molecular weight of proteins,

completing the analysis with tandem mass spectrometry (two or more mass analysers are
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coupled) which then enables peptide sequencing. Finally, computational analyses are used for
the identification of proteins based on sequenced peptides. The challenges in the field of
proteomics are the following: (1) separating peptides/proteins in the gel can exclude potential
candidates that have extreme weight or isoelectric points; (2) proteins with low abundance are
may excluded from the analysis, (3) analysis of proteins with lipophilic features (e.g. membrane

proteins) 1971,

Proteins influence the phenotype of cells through their participation in biological processes,
therefore, exploring interactions between proteins is crucial in studying cellular behaviour. PPI
detection methods (often also called interactomics) have been expanded over the last decade
with the appearance of HT screens. Based on the environment, these techniques are grouped
into in vitro, in vivo and in silico categories. The main experimental approaches are the tandem
affinity purification-mass spectroscopy, affinity chromatography, coimmunoprecipitation,
protein microarrays, protein-fragment complementation, phage display, X-ray crystallography,
NMR spectroscopy, Yeast 2 hybrid (Y2H) and synthetic lethality [details in Chapter 3] '*°. The
in silico methods are using computational algorithms to infer PPIs. These tools gain information
from in vivo and in vitro experiments, and predict new potential connections based on these
interactions [details in Chapter 3]. There are four possible outcomes of the predictions cases
if the interaction is predicted in silico and experimentally verified, the result is a true-positive; if
experimental evidence was not found then it is a potential false-positive result though future,
targeted experimental tests may be needed to verify the PPI's existence in a given living
system. Similarly, if two proteins are not connected computationally and there is no evidence
for the PPI a true negative prediction occurs, however, if they are found to interact, it is a false-

negative prediction outcome 2%,

1.6.2 Meta-omics approach

Microbial communities have been studied for decades to understand the complex relationships
and interactions between organisms that share the same ecological niche and the function of
the community as a whole ?°'. Recent technological advances, including the development of
large-scale omics methods, make such approaches possible, where mixed microbial

communities are considered as one meta-organism 2%,
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It is essential to determine the microbial composition in the host because dysbiosis-related
diseases (e.g. diabetes, periodontitis, IBD) affect more and more people worldwide. Due to the
importance of the topic, the number of microbiome analyses has been rapidly increasing. Toh
and Allen-Vercoe revealed that - based on PubMed - around 500 articles included the term
‘Human microbiome’ in 2008, reaching almost 4000 in 2013 2%, At the end of 2021, this number
reached 21,594 (source: PubMed - https://pubmed.ncbi.nim.nih.gov/).

The first observation of bacteria was by Leeuwenhoek in 1673. The first artificial bacteria
culture, established 200 years later by Louis Pasteur 2, let researchers discover a broad
spectrum of microbes ?%°. The evolution of microbiology led to a paradigm shift that promoted
culture-independent approaches, allowing researchers to explore microbial communities' role

in human diseases 2%.

Culture-dependent methods have several drawbacks, the most important being that there are
bacteria that cannot be cultivated in artificial media due to the lack of knowledge about their
metabolism and physiological requirements 2. The first study describing viable but non-
culturable microorganisms, was published in the early 1980s 2%, This finding established a
new direction in microbiology, a sequence-based approach to studying complex microbial

209,210

communities, firstly using 16S rRNAs and then completing the analysis with whole-

genome profiling 2.

Meta-omics data, including metagenomics, metataxonomics, metatranscriptomics and
metaproteomics, describes microbial community composition, expressed genes, proteins and
metabolic pathways %'?. Each meta-omics data type (layer) reveals a different aspect of host-
microbe interactions 2'3. The following paragraphs describe these features and their relevance
in HMlIs.
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High-throughput sequencing-based on methods to study microbial

communities

The isolation of microbial genes and genomes from biological samples has extended our
knowledge about microbiome composition, especially about unculturable taxa.
Metataxonomics and metagenomics provide information about microbiome composition while

metatranscriptomics describes regulation in the microbial community.

Metataxonomics explores the diversity of microbiome communities, it reveals the abundance
of microbial taxa and also highlights global composition differences between samples. A
metataxonomic workflow consists of the following steps: sample taking, DNA extraction,
amplicon sequencing of phylogenetic markers (16S rRNAs), processing sequences, taxonomic

analysis and comparative analysis 2'*.

16S RNA genes are highly conserved across microbial taxa consisting of conserved and
variable regions 2'°. The choice of primer is essential for marker gene amplification. It should
cover most bacterial species using universal primers, but some species remain unresolved. A
short sequence, called a barcode, is added to the 5’ end of the primers to identify the different

samples during the analysis 2°.

Following the amplicon sequencing, quality control steps filter the reads. Reads are nucleotide
sequences and depending on the sequencing method, they can be short or long. Quality
control software, such as QIIME2 2" or Mothur 2'8, trims the end of the sequences and removes
duplicated and low complexity reads. These steps facilitate the selection of high-quality reads
without human DNA contamination 2'°. Taxonomic profiling with 16S rRNA results in a species-
level identification of the microbiome community composition. During the analysis, the
processed reads are mapped to reference gene sequences using public databases (e.g. Silva
220 or GreenGenes ?*' ). The output is an operational taxonomical unit (OTU) or amplicon
sequence variant (ASV) table. OTUs describe sequences extremely similar to each other,
represented by consensus sequences from clustering analysis. In contrast, ASVs reveal a
single exact sequence with high confidence ??2. Finally, alfa and beta diversities are measured
to determine and compare microbiome compositions. Bioinformatics tools, such as PICRUSt2
223 or Tax4Fun 2, carry out a functional analysis. The biggest advantage of this methodology
is the fast and cost-effective 16S rRNA sequence analysis. Also it can examine correlations
between the microbiome community composition and the host condition. However,

metataxonomics gives information about taxonomical composition at low resolution and does
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not reveal the absolute quantity of microbes ?*°. Metagenomics analyses whole genome
nucleotide sequences isolated from complex microbiomes #'2. The workflow is similar to
metataxonomic protocols, however this approach analyses the whole genome instead of the
marker gene. Following the DNA extraction from samples, shotgun sequencing randomly
creates short reads. Assembling the filtered reads into larger constructs, called contigs, can
be done by mapping them to a reference genome or using de novo assembling methods to
identify new genomes. These steps enable gene detection, their functional annotation and
finally to taxonomic analysis. The advantage of metagenomics is that it can identify microbes
at the strain level. Also, using de novo assembling new pathogens can be identified from
samples. Nonetheless, gene/genome identification does not give details about gene
expression, only the presence of genes is obtainable, besides the analysis is costly and de

novo assembly is time-consuming and requires a robust computational background 2%,

With these new methodologies, the number of identified microbes has steeply increased. For
instance, in the case of the oral cavity, this number has jumped from ~280 different bacteria
identified by culture-dependent methods to 700 species %°. There are several metataxonomic
studies describing the oral microbiome 822722 The first study was published in 1995 about
Haemophilus parainfluenzae #*°. In the last twenty years, researchers established databases
to store reference genomes based on meta-omics experiments. National Center for
Biotechnology Information (NCBI), Human Microbiome Project (HMP) ¢ and Human Oral
Microbiome Database (HOMD) " are the main sources of oral microbiome data. HOMD

(http://homd.orq) is the currently most comprehensive resource which involves core taxa from

the literature and 16S rRNA sequences obtained in their laboratory or from GenBank 8.

Metatranscriptomics analysis explores the microbial RNA content of samples. This approach
provides information on the regulation and expression profiles of complex microbiomes %'2.
Analysing the meta-RNA gives a more detailed insight into the interactions between microbes
and between microbes and the host. The workflow consists of experimental steps (sample
collection, bacterial extraction, RNA purification and sequencing) and computational data
analysis: raw data pre-processing, de novo assembly, taxonomic analysis, functional
annotation and differential expression analysis. The upstream part of the analysis is very
similar to the previous two meta-data analysing approaches. Assembling the high-quality reads
into putative transcripts helps to identify the taxonomic composition of the microbial
community. Functional annotation is one of the most important steps in the
metatranscriptomics pipeline because it infers the functional activity of the microbiome.
Differential expression analysis is optional, but it enhances the understanding of an altered

I 231

condition compared to the control <. The advantages of metatranscriptomics are that it
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captures only living organisms, and due to de novo assembly, it does not require reference
data. Also, it can compare different communities and their activities 2. However, there is no

information about translational and post-translational modifications.

There are challenges in the metatranscriptomics area: on the one hand, the analysis requires
many data points/reads by short-read sequencing technologies; on the other hand, longer
reads would help the assembling and taxonomical/functional annotations. Completing
metagenomics and metatranscriptomics with other approaches (e.g. metaproteomics,
metabolomics) can improve the insight into the composition and function of the microbial

community 2%,

Metaproteomics methods to study microbial communities

Metaproteomics describes the protein content of the microbial community in a given sample.
The term was used first in 2004 by Rodriguez-Valera ?* analysing environmental samples.
Proteins play the most important role in cellular functions, therefore measuring their abundance

correlates with microbial activity 2**.

A general metaproteomic workflow consists of sampling, protein extraction and purification,
separation of microbial proteins and digesting them into peptides and then mass spectrometry
analysis. Databases provide information for the taxonomic analysis or de novo peptide
sequencing that can discover new proteins. Finally, data interpretation helps to identify

pathways and infer information about system functioning 2°22%,

There are several advantages compared to HT sequence-based methods: metagenomic and
metataxonomic data do not provide any insights into microbial activity, and also, data typically
include numerous genes with unknown functions (Ram et al.,, 2005). Besides,

metatranscriptomics does not allow translational regulation to be considered 2%2.

More and more metagenomic and metataxonomic data are becoming available, however, only
a small number of metaproteomic studies have been reported. There are experimental and
data analysis-related challenges in this field. In the ‘Host omics’ section, | mentioned the major
limitations, however, metaproteomics includes additional computational challenges. Due to a
lack of complete bacterial sequences (experimentally cultured, sequenced and characterised
strains), mass spectrometry data analysis is challenging, and peptides can be mapped to a

variety of homologous proteins from different species 2°12%.
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1.7 Data processing and modelling

Discovering the role of the microbiome in host signalling requires integrating data from different
sources. Omic data is highly interconnected, each approach explores the samples from a
different point of view. Modelling cellular behaviour by multi-omics data analysis requires
systems-level representation and analysis to facilitate the understanding of complex,
interconnected processes 2%, Systems biology aims to integrate and model complex biological
processes and their interactions. Instead of focusing on one object in an experiment, it gains

a holistic view of cellular processes in response to external stimuli 23623,

1.7.1 Network biology approaches

Appearance of HT and omics technologies in the past two decades has led to large data
generation and rapid development of the computational biology area. Using networks
facilitates the representation and visualisation of large data. There are two main directions of
network modelling: (1) static networks can represent and integrate small-scale and HT data
sets, but the objects and their interactions are not changing, (2) in dynamic models, the network
structure changes over time, the approach is used for computational simulations and

mathematical modelling 2382%,

Graph theory and network science

Networks describe pairwise connections between organisms or objects. The entities in the
network are called ‘nodes’ and interactions between them are ‘edges’ [Figure 1.7]. Graph
theory is part of mathematics and computer science but it is also applied in several other areas
of science, e.g. physics, sociology, and medicine. The definition of the network (theory) is
similar to graph (theory) but not the same. Graph theory is often described as the mathematical
foundation of network science *°. Also, the terminology differs between the two objects: a point
is called ‘vertex’ in graphs but ‘node’ in the network. Similarly, there are ‘edges’ between the
vertices in a graph and ‘edges’ or ‘links’ between the nodes in a network. In biological networks,
nodes can be different kinds of molecules (e.g. RNAs, genes, proteins), organisms or
pathways, interactions can be physical relationships, associations or even regulatory

connections 24",
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In a network, links can be directed or undirected. The first term describes a connection between
source and target nodes (e.g. regulation), while in the second case, interactions do not have
directions between the nodes (e.g. co-expression). Edges also can be unweighted or weighted.
An unweighted network represents equal connections between entities; edges in a weighted

241 Besides holistic data

network are measured by weight (e.g strength of an interaction)
analysis, networks are usually used for data visualisation. Node (size, colour, shape, label,
etc), edge (thickness, colour, etc) and network (layout) attributes facilitate understanding

patterns in large data sets 2*2 [Figure 1.7].

Network topology refers to the arrangement of nodes and edges and gives information about
networks' sub-structures. In terms of network analysis in the thesis, the most important
topological parameters are degree, hub, and shortest path. The degree of a node is the number
of interactions a node has in the network. Unlike the average in the graph, nodes with much
higher connectivity are called hubs. These points have a huge impact on the network, removing
hubs from the network leads to disconnected graphs 24243244 Translating it to the field of
biology, the mutation or deletion of these genes/proteins often leads to a lethal phenotype (e.g
knock out of chaperon proteins) 2424 The shortest path measures the minimal number of
edges which connect nodeA to nodeB 2**%* | it is equal to the functional distance between two

molecules %%,
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directed molecular network highlighting its topological parameters used in the thesis. Numbers in the
circles show the degree number. B, Classifying the key pathfinding algorithms discussed in the thesis
(S — source node, T — target node).The figure was drawn by myself.
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Computational algorithms are able to identify paths in the network using different topological
parameters. As large hairball networks are difficult to be analysed, the path finding algorithms
filter to the enriched subnetworks in the whole graph. Although there are several algorithms to
solve this issue, the approaches are different based on the type of the graph and its

parameters.

Network diffusion algorithms propagate information through the network based on the
connections between nodes 2*®. One example of a network diffusion algorithm is the Random
Walk with Restart algorithm. This algorithm simulates a random walk on the network, where at
each step, the algorithm has a probability of moving to a neighbouring node or staying at the
current node. This process is repeated many times, with the goal of reaching a steady state in
which the probability of being at each node is proportional to the degree of connectivity of that
node *°. Network diffusion algorithms are used by TieDie 2*°, NBS %' and NBS2 %2, mND #*

and many other tools (the full list is available in this review %),

In contrast, there are algorithms that handle weighted graphs and look for the optimal
subnetwork including the edge attributes. The spanning tree algorithm creates a loop-free
subgraph including the selected nodes, the minimum spanning tree aims to connect the

vertices through edges with the minimum weight. This algorithm is often used in neuroscience

analysing the connectivity of the brain ?>*. PHYLOViZ ?°® and CySpanningTree % tools are

examples for the usage of the spanning tree algorithm.

There are a group of algorithms that connect pre-determined start (source) and end (target)
points in the network. The shortest path algorithm uses the weights of the edges to find the
path that minimises the total distance. This method is often used in molecular networks, for
instance for inferring regulatory networks 2°’. The shortest path is often used to estimate the
functional distance between two molecules and identify functional clusters in the network 2*’.

CARNIVAL 28, PesCa %*° and PathExt 2°° are examples for shortest path using tools.

The Prize-collecting Steiner Forest (PCSF) algorithm infers a subnetwork including most of the
selected nodes (terminals; e.g. expressed genes in a transcriptomics dataset) from the network
connecting them with the minimum weights of edges. The novelty of the algorithm is that the
nodes which were not selected, so called Steiner nodes, can establish a bridge between
terminals that are not directly connected. The algorithm gives penalties for the following nodes:
Steiner nodes, hub nodes and terminals that can’t be connected to the subnetwork. Hub nodes
are misleading in the graph as these points (or molecules in a biological network) usually have
diverse connections (or functions) and disturb the simplicity of the graph. The goal of PCSF is

to minimise the cost and maximise the prize in the subnetwork therefore that subnetwork tries
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to include the most terminals and less hub and Steiner nodes connected by the least weighted
edges %'. Such tools are the web-based Omixintegrator (http:/fraenkel-

nsf.csbi.mit.edu/omicsintegrator/) 22 and the PCSF R package %".

Biological networks

Biological networks represent relationships between molecules and organisms but also
between regulatory, signalling and metabolic pathways. In contrast to experiments, these
models reveal complex interactomes and patterns of biological systems. The main aim of these
models is to integrate, analyse and visualise complex data 2%3. This thesis focuses specifically
on molecular networks to discover cellular behaviour on systems-level under different

conditions.

The appearance of transcriptomic data and network biology approaches inferred new
methodologies to analyse gene regulation on systems level. Gene regulatory networks consist
of genes and DNA/RNA or protein molecules connected through regulatory interactions. These
models can be used for (1) causal mapping of molecular interactions between transcription
factors (TF) and their target genes (TGs), (2) guiding experimental design by highlighting
potentially important regulatory interactions, (3) identifying biomarkers, (4) comparing the

regulatory profile of diverse conditions (e.g. healthy vs. diseased), (5) drug design 2**.

This thesis focuses on the transcription factors (TFs) regulating different genes in inflamed
conditions and connects them to the activated signalling by the bacteria. TFs are proteins
including DNA binding domain which binds to a specific DNA element (enhancer, silencer or
promoter region) and enhances or inhibits gene transcription depending on the binding region.
Based on a study, there are ~1600 potential TFs in the human genome 2%°. Altered TF - target

gene interactions disrupt the normal gene expression pattern resulting in disorders .

Cross-talk between signalling pathways coordinates biological processes in the cell. Signals
flow through molecular interactions such as protein-protein or metabolic interactions and
biochemical reactions. The aim of signalling networks is to understand the communication

system that controls cellular behaviour in different environments and conditions 253
This thesis focuses on the role of altered signalling in inflammation compared to a healthy

condition through analysing PPI networks. PPI analysis is a major focus of systems biology

due to the pivotal role of proteins in cellular behaviour ?*’. The global human protein
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interactome describes all the PPIs which are currently known by experiments or in silico
predictions. This large network highlights that proteins can have diverse sets of interactors but

currently, it is less studied how these PPIs vary in time and differ between tissues or cell types
268

1.7.2 Databases and tools

Molecular databases (DBs) are structured sets of different kinds of data essential for
computational biology. These collections involve experimentally verified and computationally
predicted information about molecules and their interactions in different organisms. The
number of biological databases has been steeply increasing, based on articles, there were 281
molecular databases in 2001 2, while this number was between 500 - 1000 in 2003 2’°. With
the appearance of HT experiments and omics data, this number rose to more than 1700 based
on an analysis in 2018 which explored the published DB articles in NAR (Nucleic Acids

Research) journal 2",

HT screens and omics approaches expanded the knowledge about the existing genes,
proteins and their features (e.g., sequence, structure). From 2004 - when UniProt was
published - until 2015 around 90 000 000 protein sequences have been described. Based on
Chen et al, gene and protein DBs can be grouped into the following sets: sequence databases,
2D gel databases, 3D structure databases, chemistry databases, enzyme and pathway
databases, family and domain databases, gene expression databases, genome annotation
databases, organism-specific databases, phylogenomic databases, polymorphism and
mutation databases, protein-protein interaction databases, proteomic databases, PTM

databases, ontologies and specialised protein databases 272,

It was reported in 2005 that although there are numerous biological DBs, a high percentage of
them are not up-to-date due to a lack of stable funding for these projects ", due to the steeply
increasing number of DBs, the situation is even worse in 2022. In the following sections, |
would like to introduce the main DBs/tools involved in the development of workflows presented

in this thesis.
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Sequence databases

UniProt Consortium is a central resource for protein sequences and annotations. From its four
databases (UniProt Knowledgebase (UniProtkKB), UniRef, UniParc and Proteomes),
UniProtKB and Proteomes have been used in the projects. UniProtKB combines
reviewed/curated Swiss-Prot entries with the unreviewed TrEMBL identifiers (IDs) that are
annotated by automated systems. Currently, there are more than 65 million UniProtKBs in the
database, an increase of >50% in just 2 years. Every protein in the database has a profile
where its annotations are available. This knowledge consists of the protein sequence, function,
taxonomy, subcellular location, post-translational modification (PTM), expression, interactions
and structure by collecting external databases (e.g. Gene Ontology database (GO), Pfam) and

literature evidence 2.

UniProt Proteomes consists of 20 125 reference proteomes and 327 987 non-reference
proteomes 2’4, Regarding their distribution in superkingdoms, there are 238 208 proteomes in
Bacteria, 103 543 proteomes in Virus, 3 172 proteasomes in Archaea and 3 189 proteomes in

Eukaryota as of 30/08/2021 (source: www.uniprot.org/proteomes/).

Protein structure databases

Technological improvements established an increased number of experimental methods which
detect protein structures, such as X-ray crystallography, Nuclear magnetic resonance (NMR)
spectroscopy, or cryo-electron microscopy 2’°> Nevertheless, the number of in silico structure
prediction algorithms (e.g. homology-based prediction by BLAST 27® ) is steeply raising which

led to an explosive growth of known protein structures.

The smallest structural unit is the motif, a short, conserved amino acid sequence associated
with distinct functions of proteins. Short linear motifs (SLiMs) - sub-sequences of usually 3 to
20 amino acids - are essential for dynamic PPIs therefore they have an important role in
signalling 2’72’8, Eukaryotic Linear Motif (ELM - http://elm.eu.org/) is a computational resource
for SLiM collection. The database annotates experimentally verified motifs and arranges them
into classes based on the functions which SLiMs mediate. Motifs are flexible patterns, there is

no need to know the whole sequence, usually regular expressions describe SLiMs 27°.
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Domains are tertiary structural components which are often functional units on their own.
These compact folded components are key regulatory participants of signalling 2°. Pfam DB -
developed by the European Molecular Biology Laboratory (EMBL) - is the largest domain
collection; there were 19 632 entries derived from multiple organisms in the DB in December,
2021 281,

Regarding the tertiary or quaternary structural levels, there are DBs which give information
about the 3D structure of proteins. Protein Data Bank (PDB) is a central resource that collects
information about experimentally verified 3D structures of large biomolecules ?®2. Besides,
there are other DBs, like ModBase 2%, SCOP %%, SWISS-MODEL Repository 2%, that infer

protein structures by comparative, evolutionary or homology modelling.

Protein-protein interaction databases

PPI DBs collect outcomes from small and large-scale experiments [details in Chapter 3] but
some of the resources integrate data from in silico predictions as well ?®°, Most DBs use the
standardised PSI-MI (proteomics standards initiative - molecular interaction) format to store
interaction data ?®. This XML-based data type unifies details about experiments to avoid

overlapping information deriving from diverse databases.

Currently, the most popular, frequently updated PPI DBs are STRING 2%, IntAct ?°and BioGrid
290 Bajpai et al collected 375 PPI resources and selected the top 16 databases for comparative

analysis 2%

. Among the examined parameters, there are the number of total PPIs,
experimentally verified interactions and exclusive interactions. The study concluded that
STRING is the most ideal resource to collect the most interactions, also, this database contains

the most information about experimentally verified links.

In an ideal case, every database should contain the same information using the same
publications, but there are differences in curation efforts. Also, there is a long list of protein or
gene IDs which are used by molecular databases, such as protein name, gene symbol, Uniprot
ID, Ensembl ID, Gene ID, Refseq ID. Mapping the IDs links the databases, but it is not a simple
process, because of the different versions and redundancy of IDs 2%2. There are many

algorithms which help to solve this problem using different approaches 2°%-2%

although it is
important to keep it in mind that manual curation causes an initial difference among data

repositories.
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Not only the ID mapping causes differences in data curation but also DBs often filter or rank
the interactions based on scores estimated by a diverse set of parameters. For instance,
STRING DB offers confidence scores measured by the type of interaction evidence (text
mining, experiment, data in another database, co-occurrence, co-expression, etc); and
transferred scores when an interaction has been described in another organism and through
homologue/orthologue prediction the two proteins are connected in the species 2. Both
scores have a value between 0 (two proteins are not interacting) and 1 (two proteins are likely

to interact).

The structure and content of PPI DBs have been improved in the last decades. Although there
are still differences between them, using a standardised format and the hierarchical annotation
of interactions instead of filtering facilitate the data integration. During my PhD, | have been
involved in the development of the OmniPath database, therefore a detailed section (Chapter

2) describes this molecular interaction resource.

Pathway databases

Biological pathways include interactions between molecules that facilitate the signal spread
through the cell. Pathway DBs contain two main types of information, a list of pathway

members and/or interactions between molecules.

Reactome is a freely available DB, which contains manually curated data about signalling and
metabolic molecules and their relation to pathways in multiple species. Regarding the human
organism, it contains 10720 proteins, in 2546 pathways. ReactomeDB describes not only
pathways but also splits them into reactions. Currently 13890 reactions exist in the database
as of 03/12/2021. The database has R and Python packages to use its data automatically but

it is available through a website (https://reactome.org/) where graphical views are available for

each reaction 2°7:2%,

KEGG (Kyoto Encyclopaedia of Genes and Genomes) is a large integrative biological resource

which consists of 16 databases. KEGG Pathway (https://www.genome.jp/kega/pathway.html)

- developed in 1995 - has collected manually curated reference paths and computationally
predicted organism-specific paths 2°°. Compared to Reactome, it contains information about
only 540 pathways (last updated: 24 March 2022), also KEGG uses more broad terms to
describe pathways. All in all, currently, KEGG is less suitable for pathway analysis but still

works for enrichment analysis.
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Signalink3 (SLK3 - http://signalink.org/), developed by our group, is currently one of the largest

signalling pathway resources. In contrast to ReactomeDB and KEGG Pathway, SignaLink3
contains information about pathway regulators on diverse levels (transcriptional, post-
translational, etc) in humans and other popular model organisms. The database has details
about 13 pathways: RTK (Receptor Tyrosine Kinase, containing all MAPK and Insulin
subpathways), TGF-3, Wnt, Hedgehog, JAK/STAT, Notch, NHR (Nuclear Hormone Receptor),
B- and T-cell receptor, Hippo, Toll-like receptor and innate immune pathways. Currently
(December 2021) there are 17,918 proteins and more than 700 000 interactions between

signalling molecules ",

Ontology databases

Ontologies describe and classify the context of a biological entity (interaction, protein, etc)
thereby facilitating the data analysis and giving a focus for studies. These terms include
diseases, developmental stages, molecular functions, location, anatomy, pathways, etc. While
these annotations contribute to the context-specific analysis, from a DB infrastructure point of
view, it is challenging to handle and standardise ontologies *®. The Unified Medical Language
System (UMLS) addressed this issue by developing standardised biomedical terminology for
annotations *°'. UMLS integrates ontologies from several databases, such as OMIM %2, NCBI

Taxonomy *% and GO 3%,

GO - developed by Gene Ontology Consortium - annotates genes and their products in a tree-
like structure where parent and child categories are represented in a hierarchical way. The
ontologies are grouped into three sets: molecular functions, cellular location and biological
processes. GO is not species-specific therefore the database enables cross-species

comparisons 304:30°,
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1.8 Aims and Objectives

This chapter introduced the main areas of biology and bioinformatics that are covered by the
PhD project. | highlighted the current challenges in the existing methods, such as analysing
large microbiome data and exploring cell type and condition-specific host-microbe interactions.
These gaps aimed to be addressed by new technologies, such as omics approaches, including
single-cell sequencing) and systems biology methods. Therefore, the primary research aim of
this iICASE PhD project was to establish computational pipelines to predict host-microbe
interactions and their cellular effects based on multi-omic data analysis using network biology
approaches. The following objectives have been defined to achieve the goals of this PhD

project:

1. Computational analysis of intercellular communication using single-cell

transcriptomics data.

2. Distinguish and list healthy and inflammation-related bacterial strains of the
gastrointestinal tract, and predict their condition-specific interactions with the host using

multi-omics data.

3. Functional analysis of the microbiome targeted host proteins to reveal the processes
directly affected by bacteria.

4. Development of standardised, semi-automatic bioinformatics pipelines to enable
reusability, and make in silico interspecies and intercellular analysis accessible for

researchers without strong computational background.
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Chapter 2 - Development of in silico approaches to

study intercellular communication

2.1 Introduction

In multicellular organisms, cells are interacting with their environment and also with each other
through a vast spectrum of molecules that ensures the growth and differentiation by spreading
the signal from cell to cell. In junctional interactions, cells are physically connected via various
structural complexes while cells interact through chemical signals in cell-cell communication
[details in Chapter 1.3.1].

Both junctional interaction and cell-cell communication are crucial in the epithelial layer, these
connections allow the cells to grow, differentiate and proliferate properly. This coherent surface
establishes a barrier that separates the outer environment, the living space of external
microbes, from the internal milieu, including stromal and immune cells. Hence, the interaction
between epithelial and hematopoietic cells contributes to tissue homeostasis. Inflammation
causes impaired cell-cell interactions hence disrupting the continuous layer that allows immune
cell infiltration. For instance, the malfunction of tight junction structures leads to altered

917 yia immune mediators. This

cytokine secretion, resulting in new cell-cell interactions
chapter focuses on the development of a semi-automated pipeline that infers cell-cell
interaction networks from single-cell transcriptomics data. In a case study, | explored altered

cell-cell interactions in inflammatory bowel disease (IBD).

The knowledge about intercellular communication is scattered across different resources.
Despite its importance, the molecular background is less discovered due to the lack of data.
As mentioned in details in Chapter 1.6.2, there are existing methods to connect cells using
predictions [REF] or combine experimentally verified knowledge with computational pipelines
[REF]. However, the effect of the altered intercellular interactions on downstream signalling is
less discovered. This gap has been addressed with the combination of single-cell omics and
network biology approaches that provide an insight into the gene expression and molecular

interactions of individual cells [details in Chapter 1.6.2] '
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Signalling databases are crucial for omics data analysis [details in Chapter 1.7]. OmniPath is
an integrated, literature-curated resource for signalling pathways. The first version was
published in 2016 and consisted of 27 popular interaction resources describing the human
interactome. Not only protein-protein interactions (PPIs) were represented in the database, but
OmniPath also provided rich annotations on the properties of proteins, including function,

localisation, and role in diseases.

In a collaborative project with Julio Saez-Rodriguez’s group in Heidelberg, we updated
OmniPath in 2020, this time combining over 100 resources into one single database. The new
version covers the interactions and role of proteins in signal transduction and also
transcriptional and post-transcriptional regulations. Besides, OmniPath became available for

mice and rats via homology translation and includes information about intercellular signalling.

There are existing databases describing ligand-receptor or junctional interactions, also there
are resources that highlight intercellular protein annotations. The novelty of OmniPath is, firstly,
the data integration that reveals new potential cell-cell interactions through merging
annotations and existing PPIs. Secondly, OmniPath is accessible via the web service at
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https://omnipathdb.org/, as a Cytoscape plugin , and packages in R/Bioconductor

(OmnipathR) and Python (pypath), providing convenient access options for both computational

and experimental scientists 7.

| contributed to the computational development of the ‘pypath’ Python module, and carried out
a quality control check of the intercellular interactions and annotations using the literature. |
also demonstrated the capabilities of the new OmniPath through the implementation of a case

study about intercellular communication in ulcerative colitis (UC).

Inflammatory bowel disease

IBD describes disorders that cause chronic inflammation in the gastrointestinal tract. Its
symptoms range from mild (e.g. fatigue) to severe (e.g., abdominal pain and blood in the stool).
The number of people suffering from IBD has increased steeply in the last decade. In the past,
IBD has mainly affected developed, Western countries (based on studies in 2018, the highest
prevalence was in North America *°’), while today studies show that IBD is more and more
prevalent in more recently industrialised countries, such as China and India 3°. In 2020, Based
on the analysis carried out by The Global Burden of Disease Study published that in 2017

around 3.9 million females and 3 million males were living with IBD 3%’. IBD is a multifactorial
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disorder, several external (environment, diet, age, etc) and internal (genetic background,

microbiome, immune-mediated tissue damage, etc) factors influence its emergence 3%,

The two major forms of IBD are Crohn’s disease (CD) and ulcerative colitis (UC). In CD,
inflammation can affect the small or large intestine and can be continuous or involve multiple

segments (skip lesions) 3'°

. UC affects the colon and the rectum, compared to CD,
inflammation appears in the mucosal layer avoiding the deeper submucosal layers. While IBD
is not curable, various treatments can reduce the symptoms and ensure remission 3'".

A recent single-cell study 3'2

revealed that intercellular connections were changed in UC. The
altered ligand-receptor connection affected the dynamic of cell populations. For example, the
elevated level of IL-18 cytokine in inflamed enterocytes led to an increased amount of Treg
cells due to IL-18 receptor expression on their surfaces *'2. The triggered receptors on immune
cells mediate pro-inflammatory cytokine expression causing an amplified inflammatory
response in the gut and leading to an imbalanced immune response 3'®. The limitation of their
approach is that the authors focused on cell type- and condition-specific LRIs. However, the
developed intercellular interaction pipeline discovers adhesive interactions as well without

restricting the analysis to LRIs between cell markers and differentially expressed genes.

This chapter focuses on an in silico pipeline that establishes ligand-receptor interaction
networks combining single-cell transcriptomics and network resources. The public data
analysis expands the interactions to junctional connections between cells and identifies gaps
in our knowledge about cellular communication in inflammation. The intercellular interaction

pipeline and the case study were published in Molecular Systems Biology '’
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2.2 Methods

The intercellular interaction pipeline discovers intercellular rewiring between diverse cells using
single-cell RNAseq data from healthy and diseased conditions. Transcriptomic data describes
a list of genes with expression values. There is a need for a reliable network resource that
describes potential PPIs to infer cell-cell connections. The pipeline builds up contextualised
networks by combining the two kinds of information to highlight the cell type-specific signalling.
OmniPath provides inter- and intracellular interactions and protein annotations to infer cell-

specific signalling networks [Figure 2.1].
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Figure 2.1: Workflow for analysing intercellular interaction and their downstream effect.

2.2.1 Identifying intercellular interactions among different cell types

| downloaded all intercellular interactions from OmniPath using the OmniPathR R package
(version 3.15 on Bioconductor) and filtered the interactors based on their subcellular locations
in OmniPath. OmniPath collects information from many resources including Gene Ontology
DB %% UniProt "4, Human Protein Atlas *'*, LOCATE *'°, ComPPI ®'® and a literature collection
23 (more details about the script collecting location information can be found here:
https://github.com/saezlab/pypath/blob/3820c3a28c13ce701f1d2b5f9ac6e00834c757da/pypa

th/core/intercell_annot.py). | discarded extracellular matrix proteins and regulators of

intercellular proteins (ligand-, receptor- and matrix adhesion regulators) as these molecules
usually appear in the cytosol. Therefore | focused on membrane-based or secreted proteins

(membrane-based or secreted ligands, membrane-based receptors, thigh junctions, gap
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junctions, desmosomes or other adhesions, ion channels, transporters and cell surface or
secreted enzymes). Importantly, because proteins are multi-functional molecules, some
interactions were duplicated due to the diverse protein annotations (e.g. A2M protein has both

adhesive molecule and receptor annotations).

2.2.2 Single-cell data processing

| analysed a publicly available single-cell RNA-seq published by Smillie et al *'? to explore
interactions between cells in the intestinal tract. The dataset was utilised in the study due to
several key factors. Firstly, it was deemed representative of the research problem, with a focus
on inflammatory bowel disease. Secondly, the sample size was substantial, with biopsies
collected from 18 patients with the disease and 12 healthy individuals. Additionally, the
research methods and techniques used in the dataset were highly relevant, as it was the first
(and only) available dataset at the time of analysis (in 2019) that examined gene expression
patterns at the cellular level, comparing samples of healthy, non-inflamed, and inflamed
ulcerative colitis. The processed scRNAseq data included 51 cell types from epithelial, immune
and stromal cell lineages. Finally, the dataset was highly accessible, with both raw and
processed data available for public use. Matthew Madgwick, a PhD student in our group,
developed an internal pipeline, called ScOmix, to analyse transcriptomic data and processed
the published raw single-cell RNAseq dataset (available at Single Cell Portal under SCP259
ID) using the original parameters from the article *'?. Briefly, the Cell Ranger pipeline *'" was
used for processing single-cell RNAseq data prior to analysis according to the instructions
provided by 10x Genomics. The resulting FASTQ files were aligned to the human reference

genome GRCh38/hg19 and subsequently filtered and count files generated for each sample.

The gene expression matrices of healthy, non-inflamed and inflamed samples were integrated
together for cell annotation and direct comparisons. Then entries with a few genes were filtered
to remove any dead or dying cells from the data. To account for differences in sequencing
depth across samples, expression values were normalised for total Unique Molecular
Identifiers (UMIs) per cell and the counts were log-transformed. The highly variable genes were
selected for downstream clustering to confirm that the clusters matched the original

annotations.

Output files described the average expression of genes under healthy, non-inflamed and
inflamed UC. | selected the healthy and non-inflamed UC conditions, to study the effect of

intercellular interactions on cellular behaviour.
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2.2.3 RNA-seq data filtering

| filtered the average gene expression matrix to discard the lowly expressed genes because
they frequently derive from the technical or biological noise of the experiment. In general, z-
score transformation helps to standardise data across a wide range of values 3'8. The z-score
(also known as a standard score) is a measure of how many standard deviations an
observation or data point is from the mean of a distribution. It is calculated by subtracting the
mean of the distribution from an individual data point, and then dividing by the standard
deviation of the distribution. A z-score can describe how unusual a data point is within a
distribution. A z-score of 0 indicates that the data point is exactly at the mean of the distribution.
A z-score of +2 or -2 would indicate that the data point is two standard deviations away from

the mean.

Hart et al published a z-score-based normalisation method that determines which genes were
expressed using a comparison between expressed genes and active promoters *'°. While the
authors applied it for FPKM data (Fragments Per Kilobase of gene model per Million mapped
reads ratio), | adapted their methodology and used it for log2-based expression values instead.
| kept genes where the z-score was greater than -3, a cut-off suggested by the authors 3'°.
This value includes those genes where the expression value is higher than three times the

standard deviation below the mean.

2.2.4 Reconstructing a cell-cell interaction network

I implemented a Python script to build up cell-cell interaction networks based on a predefined
list of selected cell types. In the case study, | selected five cell types from the processed single-
cell dataset: goblet cells, myofibroblasts, DCs, Tregs and macrophages. These cells have a
crucial role in intestinal homeostasis and are involved in UC pathogenesis *2°?*, | combined
the intercellular interactions from OmniPath with cell-specific gene expression patterns derived
from the single-cell transcriptomic dataset and examined all possible connections of cells by
pairwise comparisons. The focus of this study was on rewired cell-cell interactions during UC,
therefore, | selected the condition-specific interactions between cells. | defined condition-
specific interactions by their exclusive appearance either in the healthy or in the diseased state.
The extent of the condition-specificity was measured by the number of unique intercellular

PPIs in healthy and UC samples [Figure 2.2].
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2.2.5 Building up ligand-receptor interaction networks between

myofibroblasts and regulatory T cells

| analysed the cellular communication between myofibroblasts and Tregs in more detail
focusing on ligand-receptor interactions. | grouped the similar ligands (e.g., CCL2 and CCL3
= CCLs) and merged the connections within groups. Although this misses the different effects
of paralog ligands, it results in a simplified LRI network that highlights the main ligand-activated
downstream signalling. | assigned pathways to the receptors defined in the SignaLink3
database "% to improve biological insight and visual clarity [Figure 2.3]. One receptor can be
part of several pathways, hence | selected the most relevant one using knowledge from the

literature. Differences between conditions have been visualised by the Circos R package *%°.

| established a Treg-specific signalling network using intracellular interactions from the

3% and single-cell data, limiting the large PPl network to

OmniPath Cytoscape application
genes expressed in Tregs. | focused on the upstream part of the triggered pathways by ligands,
therefore the receptors and their first two neighbours (proteins, that the receptor can reach in

two steps) were selected for a pathway enrichment analysis using the online interface of the

Reactome pathway knowledgebase 27 (https://reactome.org/) with its default settings
(hypergeometric test, Benjamini-Hochberg FDR correction, the human genome as the

universe gene set).
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2.3 Results

2.3.1 Semi-automated pipeline to build cell-cell interactomes

The primary workflow focuses on ligand-receptor interactions (LRIs) between source and
target cells in healthy and diseased conditions. It consists of two parts: building up the cell-cell
interaction network (Python script) and visualising the LRIs on circos plots in R. The inputs are
(1) intercellular interactions (built in table, derived from OmniPathR), (2) a processed single-
cell transcriptomic dataset describing the average gene expression (user-provided) and (3) a
list of cells that will be connected and compared in healthy and diseased condition (user-
provided). Currently, the pipeline is able to handle the gene expression data in a fixed table
format describing the genes in the first column and the cell types and condition in the further
columns. Therefore the pipeline is not sensitive to how the user pre-processed the

transcriptomic dataset.

The pipeline can be downloaded from GitHub

(https://github.com/korcsmarosgroup/uc_intercell). Following the cloning of the repository

enables the user to run the pipeline. The intercellular interactome can be built up from the
Terminal, using the following command: python intercell_pipeline.py --scdata ‘path to the
single--cell transcriptomics’ --cells ‘list of interacting cells’; while the visualisation takes place

in RStudio, running the circos_LRI.R script.

2.3.2 Analysing intercellular interactions in healthy and diseased colon

| analysed the filtered average gene expression matrix from single-cell data in healthy and non-
inflamed UC samples [Table 2.1] and combined them with intercellular interactions to build up
the cell-cell interaction networks. From the 22,550 PPIs derived from OmniPath, | discarded
regulators - as these molecules mostly appear in the cytosol - and extracellular matrix proteins
- due to focusing on direct cell-cell interactions - which resulted in 22,283 PPIs between 1800
source proteins and 2074 target proteins connecting cells. | combined the expressed genes

from the five cell types with the general intercellular PPIs to observe the cell-cell connections.

Focusing on the differences in cell-cell interactions between the healthy and diseased colon, |
filtered the potential intercellular PPIs to condition-specific connections (PPI represented only
in healthy or diseased conditions). Although each cell could potentially bind to each other, the

type of communication was divergent based on the results. | found significantly fewer
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intercellular PPIs in UC networks. Interestingly, the number of interactions targeting
myofibroblasts or Tregs remains the same in both conditions [Figure 2.2, Supplementary Table
2.1]. Supplementary Table 2.1 indicates the difference in the number of PPIs between the
conditions. The outcome of the analysis shows that LRIs and adhesion connections are
dominating in both conditions between cells, probably due to the high number of these PPIs in
OmniPath (9439 adhesive and 9565 LRIs). In contrast, | found 76 PPIs between the cells that
describe tight junction, desmosome and gap junction connections. These results indicate that
intercellular communication varies among cells, moreover the analysis suggests that cell-cell

interactions are potentially weaker in UC.

Table 2.1: Number of expressed genes in cell types
Cell type Healthy colon uc
Goblet cell 13744 12 561
Myofibroblast 11 884 12135
Dendritic cell 10 558 7 501
Regulatory T cell 11 881 11 609
Macrophage 14 225 14 092

Based on the results, intercellular communication appears different between the five cell types
in UC condition compared to healthy cell-cell interaction networks. Macrophages, Tregs, goblet
cells and myofibroblasts target the dendritic cells with significantly more interactions in healthy
condition. In contrast, the focused targets are the Tregs in UC. The other four cell types
express more ligands and adhesive molecules that reach the membrane-based target proteins

on Tregs’ surface in diseased condition [Figure 2.2].
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Figure 2.2: Pairwise comparison of cell-cell interactions. The thickness and colour of the edges
indicate the ratio of cell-cell interactions in UC relative to those in a healthy state. The labels on the
edges display the exact rate. The blue-red colour scale highlights the differences between conditions,
with blue indicating an increased number in healthy samples, and red indicating a shift in the ratio
towards the UC condition. Network is visualised in Cytoscape 326,

2.3.3 Effect of myofibroblasts on regulatory T cells

| chose the interaction between the myofibroblast and Treg for further analysis. The reason for
highlighting this cell-cell interaction was that the number of the interactions between cells
remained similar in both conditions (472 PPIls in healthy colon, 478 PPIls in UC colon),
however, the function of the corresponding proteins found to be altered during the disease.
The analysis revealed 208 LRIs in healthy- and 304 LRlIs in diseased colon. The latter shows
a ~30% increase of the annotated communication in cellular communication in UC. At the
protein level, the 208 LRIs occurred between 32 ligands and 41 receptors, while 36 ligands
and 41 receptors established the 304 disease-related LRIs. Figure 2.3 depicts circos plots
highlighting interactions between myofibroblast and Treg. As the analysis focused on
condition-specific interactions, these results revealed that there could be unique connections
in both states. Although the number of ligands and receptors is similar, the raised amount of

LRIs supposes a more active cellular communication in UC.
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Figure 2.3: Condition-specific connections between myofibroblast ligands (upper semicircles,
black) and Treg cell receptors (lower semicircles, coloured by pathways) in A, ulcerative colitis
and B, healthy control. Inmune—innate immune response, RTK—receptor tyrosine kinase, TLR—
Toll-like receptor. Circos plots were created by using the ‘circlize’ R package %°.
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| analysed the role of the target receptors on Treg cell surfaces in downstream signalling
pathways. | found that all pathways derived from SignaLink3 database (TGF-beta, innate
immune response, receptor tyrosine kinase, Toll-like receptor, Hedgehog, WNT, Notch and
JAK/STAT pathways) were affected at some level by myofibroblast ligands. The ligands had
an impact on all of the pathways in both conditions, however, different receptors driving the
same signalling were targeted on T cells. The distinct upstream interactions potentially cause

varying downstream signalling in Treg cells.

| built up a Treg-specific signalling network for each condition based on the scRNAseq-derived
contextualised interactome to analyse the downstream effect of altered LRIs. | created a
subnetwork including the targeted receptors and proteins within two steps (interactions) from
the receptors. The filtered network consisted of 835 proteins in healthy and 1971 proteins in
non-inflamed UC condition. This potentially suggests more tight regulation of the Treg cells by
the myofibroblasts in UC but there is also a chance that there are more understudied processes
in terms of healthy data. According to Reactome, MAPK, TLR6/2 and TLR7/8 pathways were
enriched among the 835 proteins in the healthy colon, while in samples from UC patients TLR4
and TLR3 pathways were overrepresented (p < 0.05; FDR < 0.05) [Figure 2.4, Supplementary
Table 2.2]. Based on the results, there is a potential shift towards inflammation-related

pathways during the disease.
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Figure 2.4: Intercellular connections and their downstream effect in UC compared with healthy
control. Condition-specific ligand—receptor connections between myofibroblasts and regulatory T cells
trigger an immunosuppressive versus inflammatory signalling in T cells, in healthy and UC, respectively.
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2.4 Discussion

In this chapter, | introduced an in silico analysis that infers cell-cell networks using OmniPath,
an integrated resource for intra- and intercellular interactions. The semi-automated pipeline
consists of two main steps, (1) building up an intercellular network in Python and (2) visualising
the LRIs using R. The algorithms offer a solution for biologists with limited programming skills
as the requirements are a single-cell dataset and a list of cells to connect. The output offers a
potential overview about the key differences in cell-cell interactions between conditions visually
on a circos plot. Although the intercellular interaction pipeline uses OmniPath, a new and
integrated resource to study inter and intracellular signalling, it relies heavily on one database
including only the known interactions, besides it does not prioritise interactions. In the future,
we plan to integrate scores which contribute stronger to indirect causal relationships. Also, we
are going to include text mining approaches to extend the interaction annotations to conditions,
therefore reducing the number of false positive PPIs. Another limitation is that the pipeline
processes gene expression data but infers PPl networks. Combination of transcriptomic data
with (phospho)proteomics could solve this issue. Although phosphoproteomics is popular
among bulk data, there are studies that describe single-cell approaches to identify the cellular
signalling on individual cell level *772°. Due to the focus on functional proteins and their
interactions, this omics data would be the most suitable for the accurate estimation of pathway
activity. As the current circos plot can handle one signalling (edge colour), if a receptor attends
in more than one process, the user should define manually which one is the most important in
terms of the study. This can be done with a shorter list, like in this case study, but having a
large list of LRIs, it remains challenging. Currently, a potential solution is to create multiple
plots highlighting each pathway and the related interactions separately. Finally, the annotation
of receptor proteins is not complete, | used OmniPath including data from CellPhoneDB """,
Guide2Pharma (https://guide2pharma.com/), HPMR ** Gene Ontology 3%, and two literature-

derived resources 2333

, hence the analysis can miss potentially important signalling
pathways. Despite these limitations, the intercellular interaction pipeline gives a new insight
into context-specific cellular interaction. The scripts and examples are accessible through

GitHub (https://github.com/korcsmarosgroup/uc_intercell).

In a case example, | discovered public single-cell transcriptomic data from colon samples
deriving from healthy and UC patients and selected five cell types representing epithelial,
stromal and immune cell populations. | pointed out a possible altered cellular communication
and adhesive structures in non-inflamed UC compared to healthy colon. Ligand-receptor
interactions and their downstream effect were explored between myofibroblasts and Tregs,

two cell types that play crucial roles in UC pathogenesis 32333,
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Although studying intercellular communication on the systems- level is a relatively new
approach - due to the requirement of single-cell omic data - there are other methods and

312:333-335 Smillie et al not only published

pipelines which analyse relationships between cells
the scRNAseq datasets used in this study but also discovered cell-to-cell interactions in the
collected samples. My motivation to use the same dataset and carry out a similar analysis was
to show how OmniPath can provide a potentially more precise insight into physical cell-cell
interactions and cellular communication. The main focus of the authors was on the rewiring of
cell-cell interactions through ligand-receptor connections in UC. They used the FANTOM5
database ' as a source of LRIs. Additionally, instead of considering all of the expressed
ligands and receptors they only selected the cell markers and differentially expressed genes
between conditions. This filtration step resulted in fewer LRIs and more compact networks
where not every cell was connected to the others. Based on their analysis, in healthy condition,
DCs and T cells are described as hub nodes in the network, while in non-inflamed UC

interactions were enriched between epithelial cells and fibroblasts and T cells 3'2,

Their results are not contradicting the output of the workflow | presented in this chapter,
however their methodology highlights cell-cell interactions in a different point of view. By
limiting the analysis to markers and DEGs, the output focuses on differences at cell type level
while | explored the rewiring at molecular level. In contrast to their analysis, my workflow (1)
also explores cell adhesion structures; (2) uses OmniPath as an integrated resource of
intercellular interactions and protein annotations providing a larger coverage of the known

LRIs; (3) discovers and assesses the affected pathways downstream in the target cells.

| compared the five cell types with each other, and found a key difference between the
intercellular interaction networks deriving from healthy and UC conditions. Based on the
outcome of the pipeline, cells are tightly connected to DCs in healthy condition, while in UC
condition this tendency shifts in the direction of regulatory T cells. Because there is no
experimental validation for these results, the findings are only assumptions. However, this
hypothesis is not contradictory to the currently available information in the literature: DCs are
professional antigen-presenting cells that recognise surface molecules on other cells through
diverse cell-cell interactions, therefore maintaining normal immune response *%; Tregs are
immunosuppressive in general, however, in IBD patients their phenotype and gene expression

d 323

pattern are altere which potentially lead to more intense communication with other cell

types in the gut.
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The analysis indicated a potential increase in ligand-receptor interactions between
myofibroblast and Treg during UC that caught my attention. Therefore | carried out a
downstream pathway analysis in Treg that showed overrepresented MAPK and TLR signalling
in the disease. Based on the literature, the enriched MAPK signalling pathway plays a key role
in the immunosuppressive function of induced Tregs in healthy conditions *’. The also health-
related TLR2 and TLR7 pathways facilitate the maintenance of Th17 (pro-inflammatory T cell
subpopulation) and Treg balance and increase the immune suppression function of Treg 33833,
In contrast, in non-inflamed UC, the overrepresented TLR4 and TLR3 pathways contribute to
inflammatory cytokine expression 342 This evidence supports the fact that in healthy
condition, regulatory T cells protect against inflammation, while in non-inflamed UC this starts

to deteriorate partially by the myofibroblasts.

The pipeline gives a detailed insight into the rewired intercellular interactions during
inflammation, but some limitations need to be improved in the future. Most importantly, the
analysis relies on data coming from OmniPath. Although the resource includes the major
molecular databases (such as IntAct, BioGrid) and keeps them updated, the results rely on the
available interactions and intercellular annotations. Besides, the workflow handles
transcriptomic datasets, which give gene expression information, while the inter- and
intracellular networks describe connections between proteins. | assumed all genes expressed
translate to proteins. Also, the case study and its conclusions are based on one scRNAseq
dataset, but the 10X approach could miss some potentially expressed genes. Hence, the
finding that there is a weaker communication between cells in UC could be deceptive due to
the lower read depth in single-cell sequencing '**. Besides the biases in the data analysis,
conclusions about the type of intercellular interactions can be misleading. Usually, databases
provide information about ligand-receptor and adhesive interactions, less interactions describe
tight junctions, gap junctions, desmosomes and ion channels. | tried to overcome this limitation
by focusing on the altered ratio and differences between ligand-receptor and adhesive

interactions and ignoring small interaction categories.

In conclusion, we established an integrated resource, called OmniPath, in a collaborative
project with the Saez group that details inter- and intracellular interactions collected from
more than 100 sources. | built a computational workflow combining OmniPath with public
omic data to address gaps in the current knowledge about context-specific cellular
communication. My colleagues are now teaching the use of my workflow to the future
generations of systems biologists in training courses at the EMBL European Bioinformatics

Institute.
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Chapter 3: Discovering the effect of the human

microbiome on host cell signalling

3.1 Introduction

Systems microbiology uses analyses of omics data to understand the interactions between
microbial cells or communities and their host. During the evolution of host-microbe interactions,
three main directions have emerged: infection, colonisation and commensalism. Infection
describes a process when pathogenic microbes enter the host and start to replicate potentially
leading to diseases **3. Colonisation describes the presence of microbes in the host without
causing damage or disease ***. The term ‘commensalism’ has been used in literature to define
multiple processes, such as ‘The ability (of a microorganism) to live on the external or internal

345

surfaces of the body without causing disease’ . The current terminology says that

commensal bacteria do not induce damage after colonising the host however they can elicit

346 \WWhen both the microbes and the host benefit from the interaction the

an immune response
connection is mutualistic. However, depending on the environment (e.g impaired immune
activity or altered microbiome), commensal bacteria can turn into pathogens causing damage

and potentially disease in the host 346347,

Rewired host-microbe interactions can lead to disease in the host. Hence, understanding the
detailed cellular communication between the microbes and the host has become a significant
research area. While earlier studies focused on the role of single microbial strains in disease
38 in the last decades, the integration of systems biology approaches [details in Chapter 1]
drastically improved the host-microbe interaction detection methods. Techniques have been
shifted from in vivo / in vitro experiments toward in silico predictions. Chapter 1 describes the
experimental approaches shortly, Table 3.1 summarises the major types of in silico algorithms

with examples.
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Table 3.1: In silico PPI prediction approaches

Method

Description

Resources/tools

Orthology-based approaches

Orthologous proteins share similar
sequences, therefore, an experimentally
found PPI can be predicted in another
organism using sequence alignment

POINT34%-
354,pathDIP 3501
IsoBase 351,
InParanoid %2, 11D

3583 Singh et al 354

approaches

history of proteins 2¢7

Gene expression profile based | Genes belonging to the common | Enright et al 3*°
approaches expression-profiling clusters are more likely

to interact with each other 27
Phylogenetic profile-based Inferring PPIs based on the evolutionary COG %%

Domain-domain interaction-
based approaches (Structural
composition-based prediction)

The general assumption is that domainA
binds to domainB, then proteinA carrying
domainA interacts with proteinB having
domainB %

PPIDomainMiner 3

58

Domain-motif interaction-based
approaches (Structural
composition-based prediction)

Similarly to DDI, the known interaction
between structural components is used to
infer connections between proteins.
Further details in Chapter 2.

LMPID 359,360

Machine learning algorithms

Machine learning combines several protein
features (e.g. amino acid composition,
hydrophobicity profile) to predict the
probability of the interaction. It requires
true-positive and true-negative interactions
for the training used to train the algorithm.
It is currently the most powerful approach
for PPI prediction 2%,

InterSPP| 36

Revealing cross-species interactions is challenging due to obtaining multi-omic datasets from

the same sample 2, therefore there is a need for computational pipelines to overcome this

problem. In silico algorithms attempt to predict interactions between molecules at a systems

level. There are several approaches, a common characteristic is that all of them look for

similarities between molecules and interactions (e.g. similar sequences, expression patterns,

structural composition or evolutionary history

) 363

The thesis focuses on detecting host-microbe PPIs, but microbes interact with the host through

metabolite- and RNA-mediated interactions as well. . The following paragraph details the

structural-based domain-motif interaction (DMI) -based PPI detection method.
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Proteins do not have a simple linear shape, these macromolecules are organised in complex
3D structures. Knowledge about structural properties can improve the PPI networks 4.
Primary structure describes the proteins on the amino acid (AA) level. Short linear motifs
(SLiM) are short amino acid sequences (3-20 Aas) containing conserved positions. Secondary
protein structure (e.g alpha-helices and beta-pleated sheets) highlights smaller organised parts
of the molecules, while the tertiary structure is a 3D construction that is folded into functional
units, called domains *®°. Regarding the tertiary structure of the proteins, globular and fibrous
constructions can be distinguished. Fibrous proteins are long-shaped molecules consisting of
repetitive amino acid sequences that are less sensitive to changes in the environment, such
as pH or temperature. Usually, these proteins have a structural role (e.g. actin or collagen).
Globular proteins are more compact and built up from irregular amino acid sequences. In

contrast to fibrous protein, they have functional roles (e.g. enzymes) 3.

The irregular amino acid sequence in globular proteins is described as unstructured and
flexible regions without regular structure *%®. These intrinsically disordered regions (IDRs) play
a pivotal role in the host-microbe interactions. IDRs are determined based on the primary
protein sequence composition by identifying parameters, such as disorder-promoting
hydrophilic features and charged amino acids. Most of the prediction tools use machine

learning algorithms to combine these features and determine potential IDRs 367373,

SliMs on IDRs provide binding sites for domains and the established PPI plays an important
role in signalling pathways *’4. Currently, resources describing DMIs or even SliMs are limited.
Eukaryotic Linear Motif (ELM) resource *’°, Linear Motif mediated Protein Interaction Database
(LMPID) 3%, interActions of 76ocatio domAiNs (ADAN) *° and the database of three-

376

dimensional interacting domains (3did) provide structural and interaction-related

information.

There are existing studies and methods which use DMIs to infer PPI, all of them are based on
structural information derived from the ELM and/or 3did resources. Zhang et al discovered
DMI-based PPIs between grass carp and grass carp reovirus *'’; Halehalli and Nagarajaram
established a workflow to study viral-human PPIs *’8; Evans et al discovered human — HIV
PPls and | was also contributing to a study to reveal PPIs between bacterial pathogens and

human autophagy proteins *7°.

All of these studies focus on discovering various types of host-microbe interactions, however
they lack details regarding the tissue/cell and condition specificity of those interactions. The

workflow, presented in this chapter, aims to address this limitation and fill this crucial
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knowledge gap in the field. It combines structural in silico PPI detection methods with host
omics data analysis and predicts the effect of extracellular microbes on host signalling
pathways in tissue- and cell type-specific ways. Moreover, | reconstructed tissue/cell type-
specific intracellular signalling to analyse the downstream signalling effects of the microbes. In
addition, completing the network modelling with functional analysis gives an overview of the
potential changes in the signalling flow and cross-talks between pathways due to diverse host-

microbe interactions.

3.2 Methods

The original host-microbe interaction pipeline has been published as ‘MicrobioLink’ in 2020 3¢°.

However, during my PhD, | started to work on a newer version, called MicrobioLink2. In the
following sections, | would like to introduce the existing workflow and highlight the
improvements in MicrobioLink2. A detailed description of the practical application of the
algorithm, as well as information on its ease of use and input requirements are described in
Chapter 4 and Chapter 5.

As the pipeline potentially will be used for commercial purposes by the industrial partner, |
checked the licences for the tools used in the pipeline [Figure 3.1]. In the project, | did not use

any resource which was not been updated in the last 10 years or the website was not available
381-385

)
g%o %°
o~0
o
Single-cell RNAseq data Bulk RNAseq data One'or mo_re
(healthy vs. diseased)  (healthy vs. diseased) bacteria strain(s)
Expressed genes in dedicated cell types or tissues Proteomics
Identification of MicrobioLink2 pipeline er{de;taiftif:a;ﬁ’:'nao;s
target motifs zymatl !
— w rrrsssssnsnsasssss s n
Uniprot/Pfam
GeneA GeneA  GeneB | GeneA GeneA zéneg EtM Host-microbe protein-protein interaction Blgl] Bacterial
GeneB GeneD  GeneD | GeneB GeneB Gene In silico screen for all potential interactions proteins
GeneC GeneE  GeneG || GeneD GeneC GeneF

PSORTbD (optional)

‘mniPath/

Reactome DB TieDie
— —>

Cell type or tissue Pathway modeling
specific network

Effect of bacterial proteins
on host signalling

Figure 3.1: Workflow of host-microbe interaction prediction. Pre-processing of host and microbial
proteins (highlighted by transparent colours) is not included in the pipeline. Resources with green
background: no restriction for commercial use. Yellow background: some resources require a licence
for commercial users. Red background: commercial use requires a licence.
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3.2.1 Location analysis of proteins

The pipeline focuses on extracellular bacteria that interact with the host cell membranes and
mediate their effect through ligand-receptor interactions or disrupting the cell adhesion
structures %37, Hence, secreted and membrane-based proteins are essential for bacteria to

%8 | implemented a

contact and communicate with the membrane-based host proteins
subcellular location analysis of microbial and host proteins into the workflow, however, it is an
optional filtration step for bacteria due to the low number of the microbial proteins with known

or predicted annotation.

Microbial proteins

| used the PSORTb computational tool (v.3.0.3) for the subcellular location analysis of bacterial

proteins. PSORTD is available both online (https://www.psort.org/psortb/) and as a Docker

container 9. To avoid the installation of docker service by the users, in MicrobioLink2, | built
in the original data from the database into the pipeline which contains microbial proteins and
their predicted subcellular location scores 3%°. Depending on the type of the analysis, using
microbial locations is optional in the pipeline. PSORTD is licensed by the GNU General Public

License v2.0 and is available for everyone both in academia and industry.

Due to the different membrane structures of bacteria, the prediction is different in Gram-
positive bacteria, where the microbe has a thin inner plasma membrane and an outer thicker
peptidoglycan cell wall compared to Gram-negative strains which have a thin plasma
membrane, peptidoglycan layer and an outer membrane. Depending on the membrane
structure, the locations can be cytoplasm, cytoplasmic membrane, periplasm, outer

membrane/cell wall and extracellular space 3%°.

The location prediction algorithm of PSORTb consists of multi-analytical modules including
SCL-BLAST & SCL-BLASTe, Support Vector Machines (SVMs), Motif & Profile Analysis, Outer
Membrane Motif Analysis, ModHMM, and analysis of signal peptides. SubCellular Localization
BLAST reveals the homolog of proteins with known subcellular locations using Blast-P search
391 (comparing a protein query to SCI-BLAST database). Support Vector Machine Modules are
machine learning-based methodologies which help the algorithm to assign proteins to locations
based on positive and negative training sets [see Chapter 1.7.2 for more details]. Motifs
analysis is based on specific motifs which determine the location of proteins in the cells. Gram-

negative bacteria have unique beta-barrel proteins in their outer membranes. PSORTDb
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collected over 250 motifs which characterise these structures and therefore decides whether
the query protein is part of the outer membrane structure or not. ModHMM identifies
transmembrane proteins by the hidden-Markov model (a statistical method to predict the
sequence of unknown variables based on a set of observed features). Finally, signal peptides
are a specific part of the protein sequence which determine the subcellular 79ocationn of the

protein 3%,

PSORTDb uses RefSeq IDs in the prediction files, therefore | implemented an ID translation
script, which maps RefSeq to UniProt ID. Also, the script downloads the corresponding protein
sequence for the RefSeq ID. As an input, the user should provide a table including the
organism ID of the bacteria of interest and its Gram-state for prediction. The output of this step
is a list of membrane-based or secreted microbial proteins annotated with strains in which
these molecules are expressed. Although this step is optional in the pipeline, it can give a more

focused interactome between the microbiome and human tissues/cells.

Human proteins

Subcellular location of human proteins derived from OmniPath (https://omnipathdb.org/) which

is a curated, regularly updated resource merging the main molecular databases in the field
[details in Chapter 3]. OmniPath collects information from many resources including Gene
Ontology DB %, UniProt 2”4, Human Protein Atlas *'*, LOCATE 3'°, ComPPI *'® and a literature
collection '?® (more details about the script collecting location information can be found here:
https://github.com/saezlab/pypath/blob/3820c3a28c13ce701f1d2b5f9ac6e00834c757da/pypa

th/core/intercell _annot.py). To download plasma membrane proteins | implemented an R script

using the OmniPathR package '".

3.2.2 Host-microbe protein-protein interactions

In Microbiolink2, | modified an existing DMI-based PPI prediction algorithm from the previous
version that connects bacterial domains to SliMs on human protein sequences and it reduces

the number of false-positive PPIs through IDR prediction on host binding sites.

The knowledge of the existing bacterial domain structures was limited 3°2 till 2021 when
AlphaFold2 was published *%. This artificial intelligence-based method exploded the field of
structural biology by predicting more than 200 million protein structures, including bacterial

proteins. The current version of MicrobioLink uses InterPro *** for structural analysis, which
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provides an automated sequence analytical program for domain prediction called InterProScan
3% It includes several protein signature recognition methods to identify Pfam domains based
on the FASTA sequence. SLiMs derived from the ELM database *%, to avoid too general

motifs, only SLiMs with a length greater than two amino acids were used in the analysis.

Bacterial domains are able to bind SLiMs on the target protein sequence. The idea behind the
DMI algorithm is that proteins that carry these structural components are able to establish
directed PPI networks where the source is the bacterial protein and the target is the human

protein.

The first version of MicrobioLink used experimentally verified domain-motif interactions from
the ELM database (data from 2013). In the new MicrobioLink2 pipeline, | updated ELM (data
from 2021) and also added 3did 3’ to the resources [Figure 3.2]. ADAN ** was not updated
since 2009 therefore | did not use it for predicting PPIs. Although LMPID **° was published in
2015, the database does not contain Pfam IDs and regular expressions for motifs, therefore |
did not implement it into the workflow. Merging databases is challenging because resources
use a diverse set of IDs to describe interactions, hence the first step is mapping them to a
common identifier. In MicrobioLink2, the motifs are represented by regular expressions and

the domains are described by Pfam IDs.

Analysing motifs allows the implementation of a quality control step into the pipeline that
reduces the number of false-positive interactions in the networks. Among the available IDR
prediction tools, | chose IUPRED, because originally, MicrobioLink uses this tool (version 1).
The algorithm discarded those motifs which appeared out of disordered regions because these
parts of the proteins are rigid and there is less chance that they can be caught by domains 72,
The tool uses scores based on two methods (IUPred and ANCHOR?2) to measure residue-
level energy terms. The energy terms correlate with how intrinsically disordered the protein
region is. Higher disordered regions are more accessible for the bacterial domain. Two cut-off
values (IlUPred > 0.5 and ANCHOR?2 > 0.4 - defined in the source article) were set up to select
human motifs which are presented out of globular domains and at an intrinsically disordered
protein region *. Both IUPred and ANCHOR?2 scores represent the probability of a given
residue being part of a disordered binding region, but ANCHOR2 provides two additional

methods to estimate the energy associated with interaction with a globular protein 373
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Here, | was working on the integration of IUPRED (version 2) into the pipeline. The tool requires
as input the result of the DMI-based PPI interaction list and gives back a score describing how
many AAs are on a disordered region. It accepts those motifs as ‘disordered motifs’ where a
maximum of one amino acid is out of the IDR. Consequently, the output of the analysis gives

back a reduced list of PPIs between bacterial domains and human motifs.

3.2.3 Network propagation algorithms

| discovered two different network propagation approaches in detail during my PhD. Both
CARNIVAL %# and TieDie #*° implement causal network approaches to model the signal flow
between the bacteria-affected human proteins and genes from host transcriptomics datasets.
However, there are differences in the tools regarding the diffusional algorithm, input data and

the focus of the algorithms.

CARNIVAL (CAusal Reasoning pipeline for Network identification using Integer VALue
programming) is available as an R package. It requires several input files including the start
point where the signal comes from (triggered receptor in the case of the pipeline), endpoints
of the signal (differentially expressed genes (DEGs)) and a directed signalling network which
came from the OmniPath database **". CARNIVAL provides a subnetwork which reflects the
transcriptional footprint of samples. CARNIVAL uses DoRoThEA 3% and VIPER 3% to directly
predict transcription factor (TF) activity from the gene expression dataset, as it skips the

additional interaction step between regulatory TF - target gene (TG) in the signalling network.

DoRoThEA is a source of TF - TG interaction, these regulatory interactions come from (1) the
literature, (2) ChIP-seq experiments, (3) TF binding motif predictions and (4) inference from
gene expression data. It consists of five categories based on the reliability of the interaction:
Category A (highest confidence) includes interactions from at least two literature curated
resources or described in one study but proved by the previously mentioned (2)-(4) methods.
Category B involves interactions supported by a curated resource AND ChIP-seq data; or
detected by methods (1), (3), (4); or detected by methods (2), (3), (4). Category C contains
interactions either from curated resources AND TF binding motif prediction; or from ChIP-seq
data AND TF binding motif prediction. Category D involves interactions deriving from one
curated resource or from ChlP-seq data. Category E (least reliable) describes interactions from
method (3) or (4). | used TF - TG interactions with the confidence score A, B or C in the analysis

to create a focused, more reliable signalling network.
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The VIPER package calculates TF activity using DEG fold change values from the host omics
dataset and regulatory interactions from DoRoThEA. It ranks the TFs based on their activity
on DEG regulation, and gives only the top 50, as a default setting, to the network diffusion
algorithm. This means that CARNIVAL builds up causal networks that highlight the altered

signalling between conditions.

CARNIVAL uses cplex, software to solve integer linear programming (ILP) problems, for causal
reasoning to integrate information from TF and signalling pathway activity scoring. Cplex is
free for students and academic workers however for commercial purposes researchers have
to pay for the program and therefore can not be included in the public workflow. There are

alternatives of cplex, like Gurobi (htips://www.gurobi.com/) and CBC-COIN

(https://github.com/coin-or/Cbc) solvers or IpSolve (http:/Ipsolve.sourceforge.net/5.5/) as

network optimisers. Gurobi requires a licence for using it in industrial research, CBC-COIN is
freely available for everyone, but its performance is much lower compared to the previous two
algorithms. IpSolve is an R package and could replace cplex but only for small networks due

to the time-consuming analysis.

A limitation for CARNIVAL is that in most cases describing the shortest path does not give a
realistic insight into the signalling, also, it relies on the prior annotated pathways. However, it
provides a more compact network to analyse the transcriptional footprint of samples and
highlights the key differences between conditions (e.g. healthy vs. diseased) by analysing
DEGs.

TieDIE (Tied Diffusion through Interacting Events) describes a sub-network from general
signalling networks focusing on the signal transduction between the perturbation point and the
expressed genes (not necessarily DEGs) %°. In general, diffusion-based network propagation
algorithms do not take into account the causal parameters, such as the effect of the
interactions. TieDIE solved this particular issue by focusing the diffusion process on causally
coherent parts of the network. Instead of using cplex, TieDIE computed a diffusion kernel
module generated by scipy (Python package) “®° to explore the flow of the signal in the general
network. The tool is under the GNU General Public License (GPL) v3.0 and is available for

everyone both in academia and industry.

The input files for the tool are similar to CARNIVAL: a list of perturbation points and
(differentially) expressed genes and a signalling network that connects the start and end points.
| used the core (literature curated) interactions from OmniPath as a signalling network. These

PPIs are directed but the effect is not always known. Because TieDie requires this information,
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| set up the ‘unknown’ effect to ‘stimulatory’ interaction. The reason for that is the ‘inhibitory’
effect in TieDie describes perturbation/mutation in the connection between proteins because
the algorithm itself was developed using cancer cell lines #°°. Therefore it is better to consider

the unknown effect as a positive connection rather than losing them from the networks.

TieDie CARNIVAL

A

Predicted TF activities
by VIPER

4 “DEGs"

or
xpressed genes,

DoRoThEA

Figure 3.2: Brief comparison of TieDie and CARNIVAL network propagation algorithms. Black
boxes highlight the microbial protein, and circles reveal the human proteins. Coloured circles are part of
the downstream signalling subnetwork that mediates the effect of the upstream HMIs. While TieDie
infers a larger subnetwork, including all possible paths between the bacteria-affected human proteins
and TFs regulating the expression of genes, CARNIVAL focuses on the shortest path between the
membrane-based protein and those TFs which drive differences in gene expression comparing the
conditions.

3.2.4 Gene enrichment and overrepresentation analysis

Both CARNIVAL and TieDIE reconstruct signalling networks which give insight into the signal
transduction in specific tissues or cells also highlighting differences between healthy and
diseased conditions. Due to the complexity of the networks and the cross-talk of signalling
pathways, the affected biological functions are not detectable by modelling the downstream
intracellular signalling itself. | used GSEA (GOirilla) and GSOA (PIANO) tools to interpret the

output of the network modelling in an unbiased manner.
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GOrilla is a web-based GO annotation analysis tool (http://cbl-gorilla.cs.technion.ac.il)

highlighting the overrepresented GO terms among the genes or proteins provided by the user
401 This approach reveals what processes are affected in the network and also there is a
possibility to provide background gene sets (complete genome or a customised larger set of
genes) to reveal the enriched functions compared to the functions in the background set. An
important note is that the p-value does not include the multiple hypothesis correction on the

number of tested GO terms.

PIANO (Platform for Integrated Analysis of Omics data) includes 11 gene set analysis (GSA)
calculation methods to perform gene set enrichment analysis and visualise results
interactively. The extended statistical approaches give flexibility to the algorithm, therefore it
accepts expression values, p-values, t-values and even fold change values as input for the
GSEA. PIANO ranks the input values based on gene set statistics and gives back a list with
enriched signalling pathways or other biological processes. The tool is available as an R

package “%.

3.3 Results

Because this chapter describes the development of a novel methodology, the result is the
pipeline itself. In this section, | would like to provide a user guide describing the inputs and
outputs for MicrobioLink2 and also highlighting the automated and manual steps in the

workflow.

I implemented two versions of the workflow depending on its usage: (1) for people in academia
the whole pipeline is available, (2) for commercialising purposes a licence is required from
EMBL, which institute provides the ELM database; besides a limited number of interactions
and annotations can be used from OmniPath (35 686 interactions instead of the 40 014 PPIs
that are in the academic version) and the quality control step left out due to the lack of industrial

licence from IUPred.
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3.3.1 Host-microbe interactome

The in silico host-microbe interaction prediction is a semi-automated workflow written in
Python. The input files are separated into user-provided and hard-coded files. The user has to
upload the following inputs: (1) a list of bacterial proteins or UniProt Proteome IDs, (2) a list of
host genes/proteins of interest or a processed host transcriptomic/proteomic dataset where
the required format is either a list of genes/proteins or a matrix describing the
expression/abundance of the molecules. Compared to MicrobioLink which accepts bulk

transcriptomics, the new version is able to handle single-cell transcriptomics data as well.

The DMI table and the SLiM patterns derive from ELM and 3did, also resources for the IDR
prediction by IUPred are provided and implemented in the script because these standard files

are part of the DMI-based PPI prediction algorithm and the quality control afterwards.

MicrobioLink includes 258 DMIs from ELM (data from 2013). However, the latest version of the
interactions describes 354 interactions, | updated it in MicrobioLink2. The new table not only
expanded the list of interactions but also removed 13 DMIs due to motif ID changes, therefore
the new pipeline describes connections with the most updated Pfam and ELM maotif IDs. Also,
the new pipeline includes extra 985 interactions derived from the 3did database. Interestingly,
there was no overlap between ELM and 3did in terms of the motif regular expressions resulting

in a lack of common DMIs.
The bottleneck of this analysis is the number of described domains that have known target

motifs. MicrobioLink includes 114 domains while MicrobioLink2 contains 277 domains [Figure
3.3].
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Figure 3.3: Comparison of motif targeting domains between ELM (old version - ELM (2013) - in
MicrobioLink and the new one - ELM (2021) - in MicrobioLink2) and 3did.

Firstly, the script downloads the domain structure of bacterial proteins and the .FASTA
sequence file of human membrane proteins. If there is an available metaproteomic dataset that
describes protein abundance in the microbial community it can be used directly for the pipeline.
However, in the lack of metadata, the algorithm accepts a list of UniProt Proteome IDs and
downloads the whole proteome from the database. In this case, the input file consists of two
columns, one with the bacteria strain and the other one with the proteome ID. Also, there is a
possibility to analyse another condition (e.g. diseased microbial community) in parallel. The
script accepts an optional parameter, the column that describes the proteome ID of the bacteria
strains in the other condition. There is an opportunity to assign a location for bacterial proteins
or even filter the dataset based on subcellular location to avoid the large host-microbe

interactome. However, this step is not part of the core workflow, it should be run separately.
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Regarding the host side, there is a need for processed transcriptomic or proteomic datasets.
The required format is an average gene count or protein abundance matrix that includes the
description of genes (by gene symbols) or proteins (by UniProt IDs) in rows, the cell or tissue
type with the condition in columns and the average expression or abundance value in the cells.
The algorithm downloads only the sequences of the potential membrane-based proteins

filtered by annotations in OmniPath.

The inputs are ready for the interaction prediction (and the quality control in the academic
version). IUPred is not available for commercialising purposes, therefore it is available in a
separate script. The output of the prediction is a table describing details about host-microbe
interactions including the interacting proteins (UniProt IDs), the interacting bacterial domain
(Pfam ID) and human motif (exact position in the protein sequence and its length) pairs. This

interaction table can be used as an input for Cytoscape to visualise the interactome manually.

3.3.2 Network diffusion modelling

The second part of the analysis consists of another semi-automated workflow implemented in
R and Python that constructs the downstream intracellular network. Although the heat
propagation algorithms use different methods to build up downstream signalling network, their
input files are similar: (1) list of perturbation points (bacteria targeted human proteins from the
prediction), (2) endpoint for the signal spread (TFs), (3) contextualised regulatory interactions
from DoRoThEA, (4) (differentially) expressed genes, (5) contextualised PPl network with
directed edges. By contextualised data, | mean interactions between expressed

genes/proteins from the input host transcriptomics/proteomics dataset.

Using CARNIVAL the most important output is the final network visualised by GraphViz 4%,
besides it creates files for each network model created by cplex. In contrast, TieDie makes a
report.txt file about network statistics and a summary of the analysis. Also, it gives information
about the interactions and about the heat of each node which parameter quantitatively
describes the strength of the signal spread through the downstream proteins. For further

visualisation, the interaction and node annotation files can be imported into Cytoscape.
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3.3.3 Functional analysis

For the gene set enrichment analysis (GSEA), users should provide two gene sets to analyse
the statistical significance of the overrepresented pathways. Using CARNIVAL automatically
results in GSEA by PIANO. However, for the TieDie output network, | inserted a manual
functional analysis by GOrilla tool to extend the scope of GSEA tools. Here, the observed gene
set includes the nodes that appear in the output networks from TieDie, and the background

gene set contains all the genes in the whole contextualised PPI network.

3.4 Discussion

| have developed an in silico host-microbe interaction prediction method to analyse the direct
effect of microbes on host cells and tissues by inferring a host-microbe PPl network and
exploring the indirect effect of bacteria on the downstream signalling pathways using

transcriptomic data from the host.

The workflow is based on our previously published MicrobioLink pipeline *¥° however | modified
several parts of the tool and established MicrobioLink2. | updated databases involved in the
previous version and also contributed to the development of OmniPath database which
increased the reliability of the output data [details in Chapter 2]. There are three novelties of
the work presented in this chapter. Firstly, the workflow is able to handle UniProt Proteome
IDs and gain all proteins automatically instead of requiring a list of microbial proteins. Secondly,
I included CARNIVAL as a network propagation method - complementing TieDIE - to have an
insight into the transcriptional footprint of the data as an effect of microbes by inferring the
shortest path between the bacteria-affected receptors and the differentially expressed genes
in tissues or cells. Finally, not only bulk but single-cell data can be also used as input host

transcriptomic profile for the workflow.

This study is a gap-filling approach among plenty of host-microbe interaction prediction
resources. While most of them “%*4% focus on the functional relevance of microbes on host
tissues or focus on one specific microbe, here, | propose a computational tool to explore HMIs
(where the domain structure is available) on molecular level including the advantage of
following the signal from the triggered receptors down to the transcriptional changes in the
host. Also, including single-cell transcriptomics offers a new perspective for HMI analysis and

establishes the cell and condition-specific analysis of microbes on host signalling.
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The thesis presents two use case examples of the workflow: Chapter 4 explores the cell and
condition specificity of the gut commensal Bacteroides thetaiotaomicron in healthy intestine
and during ulcerative colitis focusing on immune cells. Chapter 5 presents a use case of the
pipeline by analysing the effect of the disrupted microbiome on epithelial cells in the oral cavity

during periodontitis.

The pipeline includes several limitations. Predicting bacterial-human PPIs is challenging due
to the lack of knowledge regarding the motifs bound by bacterial domains. Using the ELM and
3did databases limits the results to those domains which occur in Eukaryotes and misses the
bacteria-specific tertiary structures. This gap could be addressed by using protein structures
from the AlphaFold2 (AF2) resource. AF2 is a software that predicts the 3D structure of a
protein based on its amino acid sequence using deep learning and sophisticated algorithms
393 By utilising the tool that deduces the structure of proteins from bacteria, we can expand the
list of potential domains present in these proteins, thereby improving the precision of our
predictions regarding the interactions between the host and microbe. Also, the effect (activator
or inhibitor) of bacterial proteins is unknown on host proteins. These restrictions can be solved
by integrating manually curated information about bacterial domain-binding motif connections
into the HMI prediction. Another issue is that | assume every transcript, expressed in
transcriptomics, translates to functional protein which is not true. Post-transcriptional and post-
translational modifications affect the mature RNA structure and the translated protein activity.
Analysing proteomics and transcriptomics from the same samples could improve the model.
Finally, | would like to include other pathway finding methods in the downstream analysis like
the Prize-collecting Steiner Forest (PCSF) algorithm to include genes/proteins missed by the

detection platform [details in Chapter 1.7.1].

In the future, | plan to upgrade the current methodology by integrating bacterial metabolite-
protein interactions into the model and analysing the effect of small molecules on host
signalling. Also, | would like to connect the bacterial metabolite-affected human receptors to

the human metabolic network (e.g Recon3D %)

to map which host metabolic pathways are
affected and how the host metabolite secretion is differing under a disordered condition.
Discovering the effect of the altered microbial metabolites in dysbiotic communities on host
processes could provide a complementary, host systems biology interpretation to the existing

community modelling efforts.
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Chapter 4: Analysing the cell-type specific effect of
bacterial outer membrane vesicles on the immune

system

4 .1 Introduction

The gut microbiome has been linked to a variety of health conditions, research suggests that
an imbalance in the gut microbiome, called dysbiosis, may contribute to the development of
certain diseases such as IBD **’. However, it is challenging to describe the IBD-associated
microbiome because the composition differs person by person. In IBD patients the intestinal
tract is colonised by a reduced number of Firmicutes species and there is an increase in
Bacteroidetes “°®, Proteobacteria and Actinobacteria species **°. Studies show a lower level

and taxon diversity of Bacteroides in UC patients compared to a control group °741°,

The Bacteroides taxon is one of the most common groups of bacteria in the intestine (with 25-

50% average abundance) *''412

. Interestingly, some of these Gram-negative anaerobic
microbes are able to act as commensals in the intestine, however others, outside the gut, can
be harmful pathogens (e.g. Bacteroides fragilis, Bacteroides thetaiotaomicron) “'*. This
commensal - pathogen conversion is due to a typical large genome of the members of the
Bacteroides taxon. These species can easily turn on and turn off a couple of genes (mainly
metabolic pathway-related ones) to adapt to the actual environments *'. Bacteria in the
Bacteroides taxon produce extracellular vesicles that are known to play key roles in
intercellular communication 4'>4'®_ In particular, bacterial extracellular vesicles (BEVs) are 20—
500 nm-sized and have spherically bilayered structures. BEVs are released by intestinal
bacteria into the gut lumen to mediate cross-kingdom interactions with host cells resulting in
modulation of host signalling pathways *'". BEVs produced by Gram-negative bacteria are
mainly composed of phospholipids, lipopolysaccharides (LPS), peptidoglycan, outer
membrane proteins and periplasmic content and also include some inner membrane and

cytoplasmic fractions 4.
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The LPS structure of Bacteroides shows unique parts compared to other bacteria (e.g.
Escherichia coli) *'® that causes a taxon-specific immune response in the host. A modified
structure of LPS, called lipooligosaccharide (LOS), has penta-acylated and
monophosphorylated lipid A that does not promote pro-inflammatory responses in immune

cells 419,420

Bacteroides thetaiotaomicron (Bt) is a prominent Gram-negative anaerobe in the Bacteroides
taxon residing in the caecum and colon of most or all animals. Bt BEVs can access and
transmigrate across boundary epithelial cells using different routes **', interact and modulate

the mucosal immune system and disseminate more widely via the bloodstream 4227426,

Bt is one of the potential next-generation probiotics *?’. To restore dysbiosis in the gut,
researchers analyse the effect of probiotics as a potential treatment for diseases 42532,
Probiotics are living bacteria promoting health benefits that are able to repair the disrupted
mucosal layer and restore the bacterial equilibrium state **2. As an essential gut symbiont, Bt
has a well-studied anti-inflammatory effect in the gut *****%* affecting both epithelial cells
(causing increased goblet cell differentiation ***) and immune cells (e.g DCs, T cells *°). Bt is
able to selectively antagonise transcription factor NF-kappaB in the host cells, therefore
decreasing the secretion of IL-8, TNF-q, and IL-1B and attenuating inflammation **3. Studies
on DSS-induced colitis in mice showed the relevance of Bt in IBD. Bt strongly induces the
maturation of the colon immune system including Treg pathway activation reducing Th1, Th2

and Th17 cytokines and increasing the expression of IL-10, TGFB and PDCD1 genes **¢.

In this chapter, | present how | used the established host-microbe interaction workflow [detailed
in Chapter 3] to explore the role of BEVs derived from the gut commensal Bt on immune cells
in healthy and UC colon. The following case study was published in Journal of Extracellular

Vesicles .
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4.2 Methods

The project consists of wet lab experiments - carried out by Simon Carding’s group at the
Quadram Institute - and computational data analysis by Matthew Madgwick and myself [Figure
4.1]. The isolation, purification and proteomic analysis of Bt BEVs were performed by Regis
Stentz (QIB). Imaging was done by Catherine Booth (QIB). Sonia Fonseca (QIB) was
responsible for the experimental verification of in silico findings. Processing of raw single-cell
data was carried out by Matthew Madgwick. All the other computational analyses and

interpretations were executed by myself.

(o]
o2 go
Single-c(eDIICI;NAseq data BEV proteins from
(healthy vs. UC) Bacteroides thetaiotaomicron

| -

Expressed genes in cycling and

inflammatory monocytes, DC1 MicrobioLink2 pipeline Proteomics 1
and DC2 cells and macrophages
[Chapter 3] Identification of
d f . 6 enzymatic domains
Identification o H 4_
o o O o Sl DT S ‘W -
GeneA GeneA GeneA  GeneB GeneA 5. Host-microbe protein-protein interaction 2. Bacterial
GeneB GeneC GeneD  GeneD GeneB In silico screen for all potential interactions proteins

GeneC GeneD GeneE GeneG GeneD
‘ 8.
L
e |
4.
@ .

Immune cell signalling Effect of Bt BEV proteins on
network Toll-like receptor pathway

Figure 4.1: Computational workflow to analyse cell-type specific effects of BEVs. Numbers
indicate the sequence of the main steps: 1, Extraction of BEV proteins from the proteomic dataset 2,
Identification of bacterial domains using the Pfam database 3, Processing the raw single-cell
transcriptomics from human colon 4, Creating cell type-specific networks using PPIs from OmniPath "%
5, Identification of SLiMs on human proteins using the ELM database 6, Predicting protein-protein
interactions (PPIls) between BEV and host proteins in each cell-type separately by MicrobioLink2 7,
Reconstruction of Toll-like receptor pathway using Reactome database 27 g, Combining cell-specific
signalling with BEV targeted human proteins.
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4.2.1 Experimental analysis of BEV proteins

Regis Stentz and Sonia Fonseca were working on the experiments that resulted in a list of
BEV proteins that | used as an input for the MicrobioLink2 pipeline. The experimental protocol
consisted of the following steps: isolations and characterisation of Bt BEVs, proteomic analysis
of the vesicles and checking of the structure of BEVs by transmission electron microscopy.

Details about the experiments can be found in the original article **’.

4.2.2 Single-cell transcriptomic datasets analysis

The same public study *'? has been used for the project that has been described in Chapter 2.
While in that study epithelial, immune and stromal cells were analysed, here, | filtered the data
for only the following immune cells: cycling monocytes, inflammatory monocytes,
macrophages, DC1 (healthy mucosa-related subset) and DC2 (inflammation-related subset).
For these cell populations, | used those that were from healthy or non-inflamed UC conditions.

Further information about the single-cell data processing is described in Chapter 2.

4.2.3 Analysis of bulk transcriptomic data

| processed two public bulk RNAseq datasets to model the effect of Bt BEVs on the THP-1
monocytes - the cell line that was used for the experimental verification of the in silico results.
| collected pre-processed datasets from Gene Expression Omnibus (GEO) (GSE132408 and
GSE157052) that described gene expression in healthy condition. Due to the different
protocols of the two studies, | normalised the datasets using the DESeq2 R package. Also,
GSE132408 used gene symbols while GSE157052 described genelDs, hence | unified them

to gene symbols using Uniprot ID conversion tool 2%

, and kept only genes which were detected
in both experiments. | filtered the expressed genes with the Z-normalisation method (cutoff > -

3) [details in Chapter 2].
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4.2.4 Cell-type specific Bt BEV - human interactome

| explored the effect of BEV proteins on different cell types based on host-microbe PPI
networks using MicrobioLink2 introduced in Chapter 3. The assumption was that a BEV protein
can bind to a human protein if a BEV protein domain targets an amino acid motif on the host
protein based on the ELM database 2’°. First, | downloaded the sequence of BEV proteins
detected in the proteomics analysis from the Carding lab and of the human proteins, which
438_ |

were translated from genes in the single-cell transcriptomics using the Uniprot database

connected the two sets of proteins with the MicrobioLink2 pipeline [details in Chapter 3].

4.2.5 Functional analysis of Bt BEV protein targets

| performed gene set overrepresentation analysis by GOrilla *°' to highlight the main functions
affected by Bt BEVs. The observed input gene set consisted of the Bt BEV targeted human
proteins while the background set described all expressed genes in the examined cell type
under healthy or UC condition. An annotation was significantly overrepresented among the Bt
targets if the p-value was less than 10 and the FDR g-value calculated by Benjamini and
Hochberg method was less than 0.05. The output of the functional analysis describes a list of
processes affected in each cell type by Bt. Due to the complexity and difficulties in data
interpretation, | used REVIGO to reduce the dimensionality of the annotations and identify
significant differences among functions **°. simRel scores were applied to measure the GO
semantic similarity. To visualise the functional overlap among cell types and conditions, | used

the InteractiVenn web-based tool #4°.
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4.2.6 Cell-type specific signalling pathway analysis

The TLR signalling pathway is complex and encompasses nine receptors and numerous
downstream components. | obtained the pathway members from Reactome 2’. | combined the
host-microbe PPI prediction results with log2 expression values from scRNAseq and bulk
RNAseq datasets (monocytes, dendritic cells, macrophages, THP-1 cells). This allowed me to
understand cell type-specific gene expression patterns and their impact on interspecies
interactions. | calculated the difference in gene expression between two states (expression in
UC condition — expression in healthy condition), and visualized the results using heatmaps

created in Python, in order to compare the patterns under varying conditions.

4.2.7 In vitro validation of in silico findings

Sonia Fonseca performed the experimental validation; the exact protocol is described in the
original article **’. Briefly, she handled THP-1 monocytes with NF-kB reporter constructions to
highlight the activation of the TLR pathway under diverse conditions. The cells were exposed
to Bt BEVs, E. coli LPS and phosphate-buffered saline (PBS) as a control to explore the effect
of LPS- and LOS-coated bacterial vesicles on the signalling. The TLR pathway was inhibited
by CLI-095 (a TLR4 inhibitor) and a TIRAP inhibitor which enabled us to study the TLR4 and
TIRAP-mediated activation of the TLR pathway.

4.3 Results

4.3.1 Reconstructing a BEV - human interactome

We combined experimental approaches with in silico analysis to reveal the effect of Bt BEV
proteins on signalling pathways in human cells. Following the isolation and purification of
BEVs, a proteomic analysis unveiled 2068 proteins in the bacterial vesicles. | analysed single-
cell RNAseq data highlighting the expressed genes in the selected five cell types: cycling
monocyte, inflammatory monocyte, DC1, DC2 and macrophage. Figure 4.2 shows the
predicted number of PPIs between the BEV and human proteins. Although RNAseq data
describes genes, | inferred the protein-protein interaction (PPI) network by assuming that all

expressed genes were translated into functional proteins.
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| found 48 BEV proteins which were able to bind target sequences on human proteins. Most

of them (43 out of 48) were hubs in the network, each contacting hundreds of human proteins

separately due to their enzymatic nature. These 43 proteins are hydrolases, proteases, and

other catabolic enzymes without a specific cleavage site. The rest of the five BEV proteins

interact with a human polymerase.

Around half of the expressed genes in human cells were potentially able to connect to bacterial

proteins in every cell type [Figure 4.2]. There was no difference among the interacting bacterial

proteins, the same 48 proteins were included in the PPI networks in both conditions. However,

| found human proteins which interacted with the BEVs only in one of the conditions (healthy

or UC) or in a few cell types. This outstandingly high ratio of host targets shows the need for a

specific focus on the data instead of analysing the whole interactome.

a, Healthy condition

Bacteroides thetaiotaomicron
48 BEV proteins

Dendritic cell subset 2

Cycling monocyte ‘ ks

12128/5840 (

Inflammatory monocyte Dendritic cell subset 1
8674/4263 Macrophage 10558/5197
14226/6705

b, Ulcerative colitis

Bacteroides thetaiotaomicron
48 BEV proteins

Dendritic cell subset 2

Cycling monocyte e
i 12893/6206

10845/5389

Inflammatory monocyte Dendritic cell subset 1
8113/4068 Macrophage 7501/3766
14093/6630

Figure 4.2: Interactions of 48 BEV proteins with various human cells. Monocytes, macrophages
and dendritic cells in healthy (a) and UC (b) conditions interacting with BEV proteins. The number of
expressed genes/number of interacting proteins is highlighted for each cell type. The figure was drawn

by myself.

96



4.3.2 Functions of the human target proteins

The described BEV - immune cell interactome highlights which proteins are directly targeted
by the Bt BEVs, however it does not give information about the affected processes themselves.
| explored the function of the BEV targets using the GOrilla enrichment analysis tool and then
compared the differences among the selected immune cells. Around 60% of annotations in all
the cell types were overlapping between cells related to basic cellular processes, such as
metabolic pathways and chromatin organisation. Although in a smaller ratio, | found bacteria-
targeted processes appearing in one of the cell types. In inflammatory monocytes, Bt BEV
proteins affect apoptosis and myeloid cell differentiation, while in cycling monocytes,
proliferation-related functions were enriched in both conditions. Interestingly, in the healthy
condition, among the BEV-affected processes in DC1 cells, somatic diversification of immune
receptors and B cell apoptosis were uniquely over-represented. In contrast, vesicle fusion,
negative regulation of apoptotic signalling pathways, and the intracellular steroid hormone
receptor signalling pathway were found as uniquely affected functions in UC. Regarding DC2
cells, there were only 11 cell-specific annotations in the healthy state that did not relate to
specific functions, whereas in UC, 35 unique annotations affected the cell cycle. Finally, in
macrophages, epidermal growth factor (EGF) receptor and regulation of TGF[ receptors were

involved in the healthy state and RAS protein signal transduction in UC.

4.3.3 Effect of Bt BEVs on the Toll-like receptor pathway of immune cells

As introduced in Chapter 1, the TLR pathway is important in regulating inflammatory
processes. In addition, there are publications that support how Bt affects the TLR pathway *%°.
| explored the impact of the BEV proteins on the TLR pathway in detail to reveal potential
condition-specific key signalling components. Cell types have different gene expression
profiles, therefore | have analysed the TLR pathway in diverse cells under healthy and UC

conditions.

In general, results show interactions mainly between Bt BEVs and downstream TLR pathway
members, receptors are less likely to be a target for the bacterial vesicles. The heatmap
highlights another common feature, the transcription factors did not show a different
expression pattern between conditions, besides, all of them are potential BEV targets [Figure
4.3]. | made pairwise comparisons analysing different subpopulations of cell types, such as
dendritic cells (DC1 vs DC2) and monocytes (cycling vs inflammatory) to identify cell- and

condition-specific parts of the pathway.
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Dendritic cells show exciting examples for condition- but also cell type-specificity. DC1, a DC
subset dominating in healthy condition, includes less active signalling during UC because most
receptors (TLR1, TLR2, TLR3, TLR7) and many downstream pathway components are
expressed only in healthy state. Among the condition-specific proteins, 16 BEV protein targets
suggest a diverse effect of Bt BEVs on the TLR pathway in DC1 cells in healthy condition
compared to UC. In contrast, in DC2s (inflammation-related DC population) almost the whole
TLR signalling is equally active between states, including the TLR4 receptor, which was not
found in the DC1 cells [Figure 4.3].

In monocytes, the TLR signalling shows differences between conditions rather than
subpopulations. Unlike the DCs, here, the inflammatory subtype includes UC-specific (12
genes) and healthy condition-specific (17 genes) gene expression suggesting signalling
rewiring. TLR7 and TLR10 trigger signalling in a healthy state, while in non-inflamed UC, TLR4
and TLRS5 can be found uniquely. In cycling monocytes, the signalling is balanced between the
conditions. 11 genes are expressed condition specifically, although the BEV targeted TLR4 is

strongly expressed in UC [Figure 4.3].

Experimental validation was carried out on monocytes driving from THP-1 cell line, therefore |
analysed public bulk transcriptomic data to predict BEV - TLR pathway interactions in THP-1
monocytes. Results overlap with the output of the cycling monocyte scRNAseq data analysis,
however, here | found more potential BEV-interacting proteins (PELI2-3, IRAK2, DNM1,
RPS6K2, MAPK11) [Figure 4.4].

Macrophages show less condition specificity in terms of TLR pathway member expression.
MAPK10 and MAPK11 are related to healthy, and PELI2 is related to UC condition, otherwise,
genes are equally expressed between states [Figure 4.3]. Although the number of expressed

receptors is the highest in this cell type, only TLR4 is predicted to be targeted by BEV proteins.
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Figure 4.3: Expression of TLR pathway members in the A, selected five cell types and B, THP-1
monocytes highlighting the potential BEV targets (red label). Grey colour indicates that the gene is not
expressed in the cell type based on the processed sc data. The heatmaps were created in Python using
the seaborn and matplotlib packages.
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4.3.4 Role of Bt BEV proteins in TIRAP-mediated TLR signalling

TLR4 has been identified as a potential target for the Bt BEV proteins. TLR4 usually binds LPS
molecules rather than bacterial proteins **'. However, the interactions | found were related to
the intracellular TIR domain of TLR4 that could promote the effect of BEV proteins in the
cytosol. BT_2239 is a carboxyl-terminal protein expressed by Bt carrying three domains (Pfam
domains from UniProt): a PDZ- and two peptidase S41 family domains. The PDZ domain binds
to a C-terminal motif (833-839 AAs) on the cytoplasmic TIR domain on TLR4 [Figure 4.4].
Although there is no exact information about the binding sites of the S41 peptidases, these
domains recognise tripeptides at the C-terminal end of proteins **?. | assume that these known

and supposed interactions could influence the downstream part of the TLR4 pathway.

Based on the in silico prediction, Bt BEV proteins potentially bind to TIRAP. TIRAP is an
adaptor protein for TLR2 and TLR4. It is responsible for driving the signal into the Myd88-
dependent direction, which causes pro-inflammatory cytokine secretion (e.g. TNF-a, IL-6).
Activation of TIRAP results in the induction of MAPK signalling and NF-kB-mediated gene
transcription “*. The literature describes an altered MYD88-dependent TLR4 pathway due to
interaction with Bt “*. Also, knock-out of the protein leads to a substantial decrease in TNF-a
secretion. Surprisingly, the analysis revealed four potential domains expressed by 19 BEV
proteins which can bind to TIRAP at different target motifs all over the protein sequence [Figure
4.4].
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A, TLR4 structure

Transmembrane domain

Cytoplasmic

TIR domains BEV domain binding motif (833-839 AAs)

BT_2239 (Carboxyl-terminal protease BEV protein)
carrying an interacting PDZ domain

B, TIRAP structure
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' PBD domain |e— — TIR domain
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on TIRAP 6-10 AAs 34-37 AAs 57-62 AAs 75-79 AAs
Domain type Phosphoesterase Peptidase S8 Dehydrogenase Phosphorylase
Motif site Docker site Cleavage site Ligand binding site Modification site

Figure 4.4: Structural details about A, TLR4 - Bt BEV protein and B, TIRAP - Bt BEV protein
interactions. The in silico host-microbe PPI prediction revealed an interaction between the PDZ domain
of a bacterial carboxyl-terminal protease and a motif on the intracellular TIR domain of TLRA4.
Interestingly, the TLR2/4 adaptor TIRAP is bound by four bacterial domains based on the prediction
characterised by diverse functions. TIR — Toll/interleukin-1 receptor/resistance protein domain; PBD -
Phosphatidyl-inositol binding domain. The figure was drawn by myself.

4.3.5 Inhibition of TLR4 signalling pathway diminishes monocyte
activation by Bt BEVs

| found TLR4 to be the only receptor predicted to be targeted by BEV proteins in monocytes,
macrophages and DCs. Coats et al validated the interaction between Bt and TLR4
experimentally, they found the lipidA component of LOS on Bt triggers different TLR-response
compared to LPS on E.colf’s surface **°. Sonia Fonseca from the Carding lab examined the
effect of BEVs on the receptor measured by NF-kB activation in BEV-THP-1 monocyte co-

cultures in the presence or absence of CLI-095.
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Results show that increasing BEV concentration (3 x 107 - 3 x 10%ml) enhances NF-kB
activation compared to control with PBS in monocytes. Adding CLI-095 inhibitor results in a
decrease of the transcription factor activity with the highest level of inhibition (~37%) seen at
the lower dose of BEVs (3 x 107). In contrast, applying the inhibitor during the lack of BEVs
has no significant inhibition (P > 0.05) of NF-kB activation [Figure 4.5]. All in all, the incomplete
inhibition of NF-kB by the TLR4 inhibitor offers a TLR4-independent effect of BEV proteins on
NF-kB activation.

Signalling networks identified BEV-interacting downstream TLR pathway components that
support the experimental result from TLR4 inhibition. Therefore Sonia repeated the experiment
and used a TIRAP inhibitor instead this time. Here, she found a significant (P < 0.01) reduction
of NF-kB activation (37.5%) at 3 x 10® BEVs/ml concentration but no significant effect using

higher dose of bacterial vesicles [Figure 4.5].
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Figure 4.5: Inhibition of TLR4 and TIRAP signalling pathways abrogates THP1-Blue cells
activation by Bt BEVs. A, Schematic view of the experiment; B, Experimental validation of I. TLR4 -
BEV and II. TIRAP - BEV interactions. NF-kB activation was assessed using different doses of BEVs in
5 x 105 THP1-Blue cells/ml in the presence or absence of the TLR4 inhibitor CLI-095 (I.) or TIRAP
inhibitor (I.) and by measuring absorbance at 620 nm after incubation with the colourimetric assay
reagent Quanti-Blue.LPS from E. coli was used as a positive control and PBS as a negative control.
Data are presented as mean +SD (n = 9). Significant differences were determined by using two-way
ANOVA followed by Bonferroni's multiple comparison post hoc test. ** (P < 0.01), **** (P < 0.0001).
Part A was drawn by myself while part B was created by Sonia Fonseca.
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4 .4 Discussion

In Chapter 4, | have shown a use case example for the host-microbe interaction pipeline
described in Chapter 3 that reveals the cell type-specific effect of a gut commensal bacteria -
Bacteroides thetaiotaomicron - upon ulcerative colitis. Due to the recent appearance of single-
cell omics data, there is a lack of knowledge on cell type-specific effects of microbes, especially

in a diseased condition.

Here, | was focusing on proteins in bacterial vesicles due to their significant impact on cross-
species interactions “. As Bt is a potential therapeutic agent in IBD *¥, it is important to
understand how BEV proteins are able to interact with and alter the signalling in the immune

cells thus controlling inflammatory processes.

The diverse gene expression profile of immune cells enabled BEV proteins to establish
immune cell-specific interactions. Hence, | selected cycling monocytes, inflammatory
monocytes, DC1s, DC2s, and macrophages in both the healthy and the non-inflamed UC colon
to reveal the differences and the effect of host-microbe interactions. The in silico prediction
revealed large interspecies interactomes in all five cases. Although the participants differed
between cell types, | did not find differences among the targeting BEV proteins. The majority
of the bacterial proteins belong to the diverse groups of catabolic enzymes and establish non-

specific interactions.

Functional analysis of BEV-targeted human proteins revealed cell type-specific differences,
such as overrepresented cell division in cycling monocytes in the healthy condition. These
monocytes circulate in the blood and then migrate and differentiate into macrophages in
various tissues. For a homeostatic state, it is necessary to maintain a pool of macrophages by
proliferating cycling monocytes “. In contrast, during UC, DNA repair is strongly affected in
the same cell type. Here, the literature supports the fact that a higher level of oxidative DNA
damage characterises the mucosal layer during a severe UC ***%3_ Therefore this finding
promotes that Bt BEV proteins can potentially affect DNA repair thus contributing to the

treatment of the disease.

Inflammatory monocytes dominate during an inflamed condition, however, they are
represented in the healthy colon as well but in a reduced amount. Here | found that BEV
proteins are likely to connect to proteins that are involved in apoptotic processes regardless of

the condition.
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Interestingly, in DC1 cells the somatic diversification of the immune cell receptors is affected
by the bacterial proteins. This process increases the specificity of these proteins, such as

TLRs, recognising a wider range of molecular patterns ***

. In UC, however, proteins
responsible for vesicular transport are targeted dominantly by Bt BEV proteins. DCs secrete
many kinds of cytokines, therefore altered vesicular transport can lead potentially to

inflammation and modulation of the immune system “°°.

EGF signalling plays a key role in macrophage activation, which cells are essential to control
inflammation. In healthy condition, BT BEV proteins target some members of the pathway,
therefore, leading to a potential change in the output in the cells *°°. Analysing bacterial targets
in diseased samples revealed an enriching effect on Ras-mediated signalling. Although | have
not found relevant information about the role of Ras in gut macrophages, a study highlighted
that Ras forces macrophages to pro-inflammatory cytokine production, therefore, contributing

to breast cancer #*’.

The TLR pathway plays an important role in bacteria recognition, including Bt *°***¢° however
the exact molecular background and cell type specificity are less studied. The current analysis
contextualised the pathway in five cell types, and offered potential key signalling points that
differ between cells or conditions. | could identify only the TLR4 receptor on the cell surface
interacting with Bt proteins. Other target proteins in the TLR pathway are part of the
downstream signalling network in the cytosol that assumes the intracellular presence of BEVs.
The intracellular uptake of BEVs has been supported by the literature as well **". The TLR4
receptor shows cell type and condition-specific expression based on the analysis. TLR4 is not
expressed in DC1 cells and healthy inflammatory monocytes, but shows a unique expression

in inflammatory monocytes in samples from UC patients.

This finding encouraged me to look into further details in TLR4 - BEV protein interactions and
to analyse the upstream part of the TLR4 pathway. Based on the in silico prediction, a bacterial
carboxyl-terminal protease (BT_2239) is predicted to bind the receptor. In more detail, a PDZ
domain catches a short motif - between 833-839 amino acid positions - at the end of the host
protein’s intracellular TIR domain. The PDZ domain typically binds to the C-terminal residues
of target proteins, helping to organise and regulate the activity of signalling complexes “¢"462,
Besides the PDZ domain, this Bt protein has two other S41 family peptidase domains but ELM

does not contain information about the target motifs of these structural units.
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The experiments carried out by the Carding group at the QIB validated this finding. The TLR4
inhibitor CLI-095 and the TIRAP inhibitor lead to an incomplete inhibition of the pathway in the
presence of Bt BEVs compared to the LPS treated monocytes. | assume that the vesicular
proteins from Bt can potentially interact with downstream pathway components and support

the activation of the pathway even if the receptor and its adaptor protein is blocked.

It seems that TIRAP is an important target for the BEV proteins due to the 19 potential bacterial
TIRAP interactors that | found. Interestingly, the four domain binding sites along the protein
sequence are targeted by diverse enzymatic domains including phosphoesterase,
phosphorylase, peptidase and dehydrogenase activities. Moreover, the adaptor protein shows
condition-specific expression in inflammatory monocytes and DC1 cells. Based on these
results, | assume that the presence of TIRAP in one of the conditions establishes an important
interspecies connection between the Bt and human proteins. Because the adaptor is tightly
connected to TLR4 “3, the Bt targeted cytoplasmic TIR domain on the receptor can alter the
connection between TLR4 and TIRAP which could lead to altered downstream signalling
resulting in disrupted pro-inflammatory cytokine secretion. All together, TIRAP could be a

relevant candidate for further research in IBD treatment.

Although 2048 microbial proteins were detected in the proteomic analysis, the low number of
predicted potential interactors (48) reveal the limitation of the pipeline in terms of the known
structural information from bacterial proteins - discussion in Chapter 3 describes the future
solution for this issue. This analysis is not suitable for depicting processes specific to a cell
type or condition due to a large number of BEV interacting proteins in each cell type, therefore
the output focuses mainly on common processes. A more fine-grained workflow can be
achieved by involving gene expression values, and not only the presence or absence of a

gene’s expression when establishing condition-specific differences.

Despite the limitations described in Chapter 3, the established host-microbe interaction
pipeline combines gap-filling approaches, such as structural PPI prediction and network
analysis, which highlight the importance of condition and cell specificity. | not only identified
new potential therapeutic targets for IBD treatment but also revealed the background of

biological processes on the molecular interaction level.
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Chapter 5: Predicting the effect of the oral
microbiome to the host in healthy and in inflamed
conditions

5.1 Introduction

The oral microbiome plays an important role in maintaining oral health. The colonisation of the
oral cavity begins at birth. The first invaders are aerobic bacteria, such as Streptococcus
(particularly S. salivarius), Lactobacillus, Actinomyces, Neisseria and Veillonella species.
When the first tooth breaks through the gingiva, new strains inhabit the mouth resulting in a
more diverse community as anaerobic organisms are able to appear in deeper layers of the
gum. With tooth loss, the microbiota starts to become similar to the birth stage ® indicating the

importance of teeth in determining the oral microbiota.

Description of the healthy oral microbiota is difficult because the mouth is an open system, and
is frequently exposed to exogenous bacteria in food, water, and air. Therefore studies separate
the ‘core’ microbiome [Figure 5.1] that includes the most common taxa appearing among

people from the variable microbiome characterising individuals depending on their lifestyle.

107



T™7

Cyanobacteria
B oPN
B SR1 . 3
Bacteroidetes
Epsilonproteobacteria
Deltaproteobacteria
Alphaproteobacteria
Gammaproteobacteria
Betaproteobacteria
Spirochaetes
Nitrospira
Deinococcus
Chloroflexi
Synergistetes
Actinobacteria
Fusobacteria
Clostridia
Negativicutes
Mollicutes
Erysipelotrichi Treponema

[ Bacilli unc. Spirochaetes

Thermodesuilfovibri
Nitrospirg
DSi“°°Occus

[dsOAON

pou

)
seuowoBuiyds
Paracoccus

Snueno
1810€00

winigoBuy
Agrobacterium

<
2033 e
<Egom905m‘é%%?¢g§,%&
2255252°%3%%826°
F5585335595%3%%%
£58822535%% %
£8 £33339%32
<3 3 = 35 ®
£ CEER
S c 9
G 39
S
o o
£ ®

Figure 5.1: Bacteria representing the human core oral microbiome. The phylogenetic tree reveals
the bacteria in the healthy oral cavity at the genus level. Source of the figure: 464

Various microbial communities are represented in the oral cavity (e.g. tong or tonsil
microbiome), the thesis focuses on the bacteria inhabiting the gingiva, which covers and
protects the ligament and the neck of the tooth. Based on anatomical location the microbiome
is divided into two parts: the supragingival plaque, which covers the enamel and root surface,
contains Gram-positive rods and cocci bacteria (e.g Streptococcus mutans, Streptococcus
salivarius, Streptococcus mitis, Lactobacillus), appeared to be forming a tightly adherent band.
Subgingival plaque is frequently characterised by anaerob Gram-negative species
(Actinobacillus, Campylobacter spp, Fusobacterium nucleatum, Porphyromonas gingivalis)

located adjacent to the epithelial lining of the pocket 8245°,
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Subgingival bacteria organise into different complexes defined by Socransky [Table 5.1]. The
standardised name of the complexes has been derived from the original clustering analysis

colouring, meaning that bacteria in the same colour group are similar to each other “6°,

Purple complex, green complex and yellow complex characterise the early state. These
bacteria facilitate the presence of the Gram-negative bacteria clusters (orange and red
complexes). The orange complex consists of several bacteria that enable the appearance of
the red complex “**% The red complex is usually found in the deeper periodontal pocket

because these species form a separate community where interspecies interactions and

metabolic cross-dependency are extremely strong “°°.

Table 5.1: Bacterial clusters in subgingival plaque described by Socransky et al.
(1998)
Purple complex | Green complex Yellow complex | Orange complex Red complex
Actinomyces Capnocytophaga | Streptococcus Fusobacterium Porphyromonas
odontolyticus gingivalis mitis nucleatum gingivalis
Veillonella parvula | Capnocytophaga | Streptococcus Prevotella Tannerella
ochracea sanguis intermedia forsythensis
Actinobacillus Capnocytophaga | Streptococcus Prevotella Treponema
actinomycetemco | sputigena oralis nigrescens denticola
mitans (serotype
b)
Selenomonas Campylobacter Streptococcus Peptostreptococcus
noxia concisus gordonii micros
Actinomyces Eikenella Streptococcus Campylobacter
naeslundii corrodens infermedius rectus
Actinobacillus Campylobacter
actinomycetemco showae
mitans (serotype
a)
Campylobacter
gracilis
Eubacterium
nodatum
Streptococcus
constellatus
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Regardless of the location, microbiome composition has a huge impact on tissue homeostasis,
alteration of the community composition infers a dysbiotic condition. Several external (oral
hygiene, diet) and internal (autoimmune disease, immunodeficiency disorders) factors can

470 The appearance of pathogens leads to enterotoxin

disturb the healthy microbiome
secretion, which molecules alter the permeability of the epithelium. Host-microbe interactions
are crucial for the regulation of physiological processes; alteration (rewiring) of these
interspecies connections leads to inflammation in the host [details in Chapter 1.4.2] "', A
serious consequence of the disrupted equilibrium state is that bacteria are able to enter the
bloodstream and cause diseases, such as gingivitis and periodontitis - the two main disorders

of the gum 7.

While gingivitis refers to the mild, easily reversed inflammation of gum (with a prevalence in
adults of over 90%) *’?, chronic periodontitis is a result of untreated gingivitis, which is a
polymicrobial attack that destroys the periodontal ligament and supporting marrow that
surrounds the teeth “%¢. Clinical studies revealed that chronic periodontitis is associated with

several systemic diseases (diabetes, cardiovascular diseases, cancer) 47*47%,

Van Dyke et al published a model which describes how the healthy gum becomes inflamed in
four stages: Firstly, Gram-negative bacteria replace the Gram-positives (stage 0). This shift
causes inflammation in the gingiva (stage 1), if it alters the subgingival microenvironment there
will be a polymicrobial emergence (stage 2). Till this point, the process can be reversed by
external and internal factors. Lack of treatment leads to impaired inflammatory processes and
tissue damage resulting in deeper pockets by the tooth (stage 3). This early periodontitis turns

to late-stage periodontitis (stage 4) when inflammation-mediated dysbiosis affects the gum .

In some cases, the dysbiosis starts without clinical signs - especially in older people -, therefore
samples from a healthy patient do not necessarily mean a healthy microbiome *’®. However, a
few taxa have been strongly associated with periodontal health, such as Actinomyces and
Streptococcus species *"*"® but the majority of bacteria inhabit both the healthy and diseased
gingiva (e.g. Fusobacterium nucleatum, Veillonella parvula, Streptococcus oralis,

Streptococcus intermedius and Streptococcus anginosus) #4477

During the inflammation of the gum, the supragingival microbes expand to the subgingival
area, therefore increasing the presence of anaerobic bacteria in the plaque. When the gingiva
becomes inflamed, bacteria composition shifts from Gram-positives to Gram-negatives *"°

leading to the dominance of red and orange complex members “6°,
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Defining the gingivitis-associated pathogens is difficult due to the mild symptoms, also patients
do not visit doctors at this stage. Therefore, microbiome composition often overlaps with
microbes in healthy samples, if gingivitis is at an early stage, but also with periodontitis, when
the gum is not treated “®°. In the thesis, | use the term ‘periodontitis’ to describe the

inflammation in the gingiva.

Currently, there are studies which describe experiments or computational pipelines to analyse
HMIs in the oral cavity 38489484 However, there are limitations in terms of data quality, which
means most of these approaches are working with a few microbes and exploring their effect
on a tissue or cell line. With the appearance of meta-omics and single-cell transcriptomics data
this gap has been addressed and | could establish a workflow during my PhD which aims to

predict the effect of complex microbial communities on host signalling at the cell type level.

Instead of focusing on the whole oral microbiome, | explored the subgingival microbiome and
its role in inflammation. Analysing publicly available datasets facilitated understanding the
composition of the microbiome on higher taxonomic levels. Studies highlighted that Firmicutes,
Tenericutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacterium taxa

characterise mostly healthy gum 467477485

while members in orange and red complexes
dominate in periodontitis [details in Chapter 1]. In this use case study, | was focusing on a

limited list of strains that appear dominantly in healthy gum and during periodontitis [Table 5.2].
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Table 5.2: List of bacterial strains analysed in the study

Condition Strain Role in the gingival microbiota
Gram-positive facultative anaerobes, one of the first appearing bacteria which
Streptococcus help to colonise the gingiva. S. sanguinis stimulates the epithelial layer to
sanguinis SK36 express IL-8 and B-defensins to defend against periodontitis-associated
pathogens 486
. Gram-negative facultative anaerobe bacteria, one of the most abundant species
Haemophilus . o . . . .
. in the healthy supragingival plaque interacting often with Streptococcus species
parainfluenzae ATCC iallv withS tralis. S. infantis. S a6 S i dS miti
Healthy gum  |33392 £S7speC|a y withS. australis, S. infantis, S. pneumoniae, S. oralis and S. mitis)
Lautropia mirabilis Gram negative facultative anaerobe bacteria contribute to the healthy gingival
ATCC 51599 microbiome but are dominant in mild inflammation affected gum microbiome “28.
. Gram-negative anaerobe bacteria, also being an early coloniser along with
Veillonella parvula . . o
Streptococcus sanguinis, facilitates the colonisation of the orange and red
ATCC 10790 . . . 465
complex members in the advanced state of the inflammation **°.
Porphyromonas Gram-negative anaerobe bacteria in the red complex inducing cytokine
gingivalis ATCC BAA-|expression (IL-6, IL-8) in the host epithelial cells and contributes to severe
308 inflammatory processes 4%
Treponema denticola |Gram-negative anaerobes, which are strongly connected to the other two
ATCC 35405 bacteria in the red complex (P. ginigivalis, T. forsythia).
Periodontitis

Tannerella forsythia

Gram-negative anaerobe bacteria, which secrete virulence factors having an
influence on microbial community composition, therefore, leading to dysbiotic

ATCC 43037

ce 3 state and causing inflammation in the host 490,
Filifactor alocis ATCC Gram-posit.ive anaerob.e bacteria resppnsible for inflammation-related
35896 processes in the host. It is not only a potential new member of the red complex

but also interacts with the core member Porphyromonas gingivalis 491,

Overall, | aimed to discover the effect of bacteria not only on the target cell’s signalling but also

on intercellular interactions. Therefore | combined the MicrobioLink2 [details in Chapter 3] and

the intercellular interaction pipeline [details in Chapter 2] to reveal interspecies interactomes

and their effect on cell-cell connections in healthy gum and in severe periodontitis.
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5.2 Methods

| built up a case study based on the computational pipelines that have been described in
Chapter 2 (intercellular interaction pipeline) and 3 (MicrobioLink2 pipeline). In this section, |
would like to highlight the novelty and importance of the algorithms through analysing a public
dataset [Figure 5.2].
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Figure 5.2: Computational workflow to analyse the effect of the gingival microbiome on epithelial
and immune cells in periodontal health and disease. Numbers indicate the sequence of the main
steps: 1, Downloading the proteome of periodontal health- and disease-related bacteria. 2, Identifying
the domain structure using the Pfam database. 3, Processing single-cell RNAseq data from the gingiva,
4, Creating epithelial cell-specific network using the list of expressed genes combined with protein-
protein interactions from OmniPath '%’, Selection of membrane-based proteins using OmniPath. 6.
Identifying SLiMs on membrane-based proteins using ELM database. 7, Predicting protein-protein
interactions (PPIs) between microbial and host proteins using MicrobioLink2. 8. Building up a
downstream signalling network to follow the signal from the bacteria-targeted membrane proteins till the
expressed genes which will be translated to ligands. 9. Building up intercellular interaction network
between epithelial cell secreted ligands and receptors on DC’s surface using ligand-receptor interactions
from OmniPath.
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5.2.1 Collection of bacterial proteins

| selected a limited number of strains that are dominant in the healthy and diseased oral cavity
based on an internal discussion with Unilever. Due to the lack of proteomics experiments, |
downloaded all the proteins from UniProt Proteome 2’* for each strain. In the thesis, | have
used reference proteomes that have been selected by the research community or by
computational clustering filtering to the best-annotated proteomes in Uniprot. Using the
PSORTD tool “2, locations have been predicted for each protein, but due to the high number
of ‘unknown’ and multiple location annotated proteins, | decided not to filter the bacterial

proteins based on their place in the cell.

5.2.2 Single-cell transcriptomic analysis

| analysed a publicly available study published by Caetano et al 3. Samples were taken from
the buccal gingival margin region from four patients (two healthy, one with moderate
periodontitis and one with severe periodontitis). Matthew Madgwick processed the published
raw dataset (GSE152042) with the parameters defined in the original article. In general, errors
in omic data analysis can arise from various sources such as poor quality control, data
processing or statistical methods. The developed in-house pipeline is aware of the potential
sources of bias and tries to minimise them by using appropriate quality control measures, and

bioinformatics methods [details in Chapter 2].

Output files described the normalised count values for each gene in each cell and the average
expression of genes under healthy, mild and severe periodontitis. | selected the healthy and

severe periodontitis conditions to study the effect of microbes on host signalling.

5.2.3 RNAseq data filtering

To filter the processed RNAseq dataset, | used the same z-score normalisation method as
described in Chapter 2, however, | added another gene expression filtration method for the
data. Single-cell transcriptomics measures the gene expression in each individual cell in the
sample and calculates an average of expression values counting with all of the cells. |
discarded those genes which were expressed in less than 10% of cells clustered in a cell type
in a specific condition. This method facilitates discarding technical or biological issues, such

as differences between samples or lack of gene expression, coming from the experiment.
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5.2.4 Inferring a host-microbe interaction network

| selected the epithelial cells from the single-cell dataset as the first layer that interacts with the
bacterial community. The scRNAseq identified three different subpopulations of epithelial cells
based on their differentiation states and markers: basal cells expressing HOPX, IGFBP5 and
LAMBS3; proliferating basal cells expressing MKI67 and TOP2A; and mature cells expressing
KRT1, KRT8, LAT and PTGER marker genes. Because | was interested in the interactions
between microbes and human proteins on the surface of the gingival layer, | selected the
mature epithelial cells for the analysis. Assuming that every gene - which passed the filtration
criteria - is translated to functional active proteins, | selected the membrane-based candidates
using OmniPath and downloaded their sequences from UniProt. The established
MicrobioLink2 pipeline was used to connect the healthy- and severe periodontitis-related

microbiome dominant strains to the expressed human proteins.

5.2.5 Functional analysis of microbe-targeted human proteins

The in silico prediction highlighted the potential bacteria-affected human membrane proteins.
| carried out a functional analysis to reveal their role in biological processes using the GOrilla

web-based tool (http://cbl-gorilla.cs.technion.ac.il/) *°' [details in Chapter 3].

5.2.6 Downstream network modelling

Network propagation algorithms help to connect the perturbation points (host proteins which
are in contact with the microbial proteins) to the (differentially) expressed genes through PPls,
and give a detailed insight into the signal spreading. | used TieDie **° to look at the signalling
pathways affected indirectly by microbes by binding to the cell surface proteins [details in
Chapter 3].

In this use case, | modelled two networks, one for the healthy condition and one for severe
periodontitis. The reason for not using differentially expressed genes is that | aimed to reveal
signalling processes in the two conditions separately, not only focusing on differences but
including overlapping functions as well. The final network described the signal spread in the
following order: bacterial protein — human targets — signalling pathway — transcription factor

— target gene expression. To avoid large interactomes, | was focusing on the effect of host-
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microbe interactions on ligands secretion, therefore as endpoints, | selected those expressed

genes which are translated to ligands using annotations from the OmniPath "%,

| analysed which pathways could be potentially activated by upstream host-microbe
interactions. | repeated the same functional analysis as in the case of bacteria-targeted human
proteins, however the input protein list contained members of the downstream signalling

network.

5.2.7 Reconstructing an epithelial cell - immune cell interaction network

| connected the epithelial layer to dendritic cells through ligand-receptor interactions (LRIs) to
analyse the effect of the altered microbiome composition in the subgingival plaque on immune

cells. Details about the intercellular interaction workflow are described in Chapter 2.

As a final step, to have a look not only at the pathways but also at the downstream processes
which have been affected by the epithelial ligands, | created a dendritic cell-specific signalling
network for both the healthy and diseased conditions to follow the signal spread in the cytosol
as well. | selected the receptors which were in connection with ligands and their first neighbours
- the proteins which they are interacting with - and created a subnetwork. This time, | used the
Reactome database instead of the GO term-specific GOrilla tool. | looked for enriched
pathways which were reached by the receptor using the default background settings in

Reactome (curated entities in the database) .

5.3 Results

5.3.1 An in silico host-microbe protein-protein interaction network

| downloaded the bacterial proteomes from each condition to identify the proteins (~2000-3000
protein/strain) and their domains [Supplementary Table 5.1]. Meanwhile, 3344 genes were
described in healthy epithelial cells and 3916 genes in severe periodontitis samples, although
the selection of membrane-based proteins reduced their number. The in silico prediction
identified 921 HMIs in healthy and 91 HMIs in diseased condition [Figure 5.3]. | found 8
domains out of 831 in health-related and 13 out of 1577 domains in periodontitis-related

bacterial proteomes which can cause a significantly smaller size of the diseased network
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[Table 5.3]. These results suggest that commensal and pathogenic proteins may have specific

domain structures which can not be found in the ELM and 3did databases.

Table 5.3: Bacterial Pfam domains targeting SLiMs on human proteins

Healthy condition

Periodontitis

Pfam Accession

Domain name

Pfam Accession

Domain ID

Calcineurin-like

Calcineurin-like

phosphoesterase phosphoesterase
PF00149 domain PF00149 domain
PF00899 ThiF-family domain PF00899 ThiF-family domain
PF00533 BRCT domain PF00533 BRCT domain
PF00082 S8 peptidase domain PF00082 S8 peptidase domain
D-isomer specific 2-
D-isomer specific 2- hydroxyacid
hydroxyacid dehydrogenase,
dehydrogenase, catalytic domain
PF00389 catalytic domain PF00389
PF01048 Phosphorylase domain PF00675 M16 peptidase domain
Glycosyl transferase Glycosyl transferase
PF00535 family 2 domain PF00535 family 2 domain
PF00595 PDZ-domain PF01048 Phosphorylase domain
Tetratricopeptide
PF00515 domain
Trypsin domain
PF00089
Kelch domain
PF01344
FHA (Forkhead-
PF00498 associated) domain
Protein kinase domain
PF00069
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created with Cytoscape 3%,

118



5.3.2 Functional analysis of host target proteins

The GOirilla tool highlighted several biological processes among bacteria-targeted membrane
proteins although the results were difficult to analyse due to the redundant annotations in the
database. Therefore | visualised the GO terms in REVIGO **. The REVIGO tool organises the
annotations and removes the redundant terms, therefore, facilitating to identify of overlapping
functional categories, such as metabolic or biosynthetic processes, and chromatin organisation
but also reveals differences between conditions, such as Notch signalling in healthy gum or

regulation of MAPK cascade in severe periodontitis [Figure 5.4].
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Figure 5.4: Functional analysis of bacteria targeted human proteins. The size of the points is equal
to the number of proteins involved in the function, the colour represents the log10 p-value (red- lowest
value, yellow - highest value). The diagrams were created with the REVIGO tool **°.
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5.3.3 Downstream signalling network modelling

I built up the signalling networks of healthy and periodontitis-affected epithelial cells using
TieDie. The input for the algorithm included (1) bacteria-affected membrane-based receptors
potentially translated from genes identified from scRNAseq dataset (86 genes from healthy
and 10 genes from diseased condition); (2) directed PPl network from OmniPath including
47925 interactions; (3) expressed genes in healthy and periodontitis samples (110 genes from
healthy and 151 genes from diseased condition). The networks consisted of five different types
of nodes: bacterial proteins, human membrane proteins, intermediate signalling proteins,
transcription factors (TFs) and expressed genes that are potentially translated to ligands.
Interestingly, although the number of bacteria-affected proteins was significantly less in
periodontitis (5), the number of proteins in the intermediate network was similar to the healthy
condition [Figure 5.5]. Besides, comparing the edges, | found a ~50% decrease in the number
of connections in inflamed condition. These findings assume that the triggered signal by HMIs

is less scattered and specific pathways were activated during periodontitis.

To establish statistical evidence, a randomised network analysis was conducted to examine
the number of nodes and edges. Initially, 500 sets of five membrane proteins were randomly
selected from the OmniPath database. TieDie was then run using the same intracellular
network and downstream input utilised in the periodontitis analysis. The distribution of total
node/edge counts among the 500 networks was visualised and the mean and standard

deviation of the attributes were calculated to obtain the z-score (as described in Chapter 2.2.3).

The results showed that the average number of nodes in the random networks was 65
(standard deviation = 17.8) and the average number of interactions was 201 (standard
deviation = 74.6). This indicated that the periodontitis network, consisting of 158 proteins (not
including the 19 downstream genes), had significantly more proteins compared to a network
connecting random 5 proteins with the same downstream genes (z-score = 5.22). However,
the edge number analysis revealed that the original periodontitis network, with 663

interactions, was still more connected than the random networks (z-score = 6.24).
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Figure 5.5: Signalling network in epithelial cells focusing on the downstream effect of bacteria
in A, periodontal health and B, during severe periodontitis. The figures show the output of the TieDie
algorithm connecting the upstream perturbation points to the expressed genes.
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| revealed the pathways/functions in which the downstream components play a role using
GOirila. While ~70% (813 annotations) of the processes did overlap between the conditions, |
found intriguing differences in the rest of 30%, such as negative regulation of T cells and
regulation of B cell activation in healthy condition and cytokine-mediated signalling (IL-12, IL-
6. IL-23) and TLR signalling in diseased condition-specific networks [Figure 5.6]. In the healthy
network, out of the 3344 expressed genes, 222 are represented in the subnetwork. Similarly,
in the diseased network, out of the 3916 expressed genes, 177 are represented. It is important
to note that revealed annotations are primarily focused on the bacteria-targeted proteins and
their impact on ligand secretion, as only approximately 7% of the molecules have been found

in the subnetworks.

Healthy condition  Periodontitis

Negative regulation of T cell activation Regulation of CD8-positive,regulation of alpha-beta T

. . . Il proliferati
Negative regulation of T cell apoptotic process cell proliferation

Negative regulation of T cell differentiation Positive regulation of interleukin-12 production

B cell activation Regulation of interleukin-6 production

B cell differentiation Interleukin-23-mediated signaling pathway

B cell lineage commitment Toll-like receptor signaling pathway

. . Dendritic cell chemotaxis
Fc-gamma receptor signaling pathway

Figure 5.6: Overlap between functions across bacteria-affected membrane proteins, intermediate
proteins, TFs and expressed genes translated to ligands.

5.3.4 Interaction between epithelial and dendritic cells

Epithelial cells are able to secrete immune system modulatory cytokines “®3, and have an
impact on DCs ** therefore, | explored the interplay between the two cell types. As the results
show, the epithelial cells express different sets of ligands under diverse conditions. The
inflammation-related TGFB1 and CCL19 were expressed only during severe periodontitis and
were not found among genes in the healthy cells. Also, the functional analysis of bacteria-
targeted human proteins identified the Notch pathways were uniquely affected in healthy
condition, here | found that the NOTCH1 is expressed only in healthy state. Having a closer
look at the receptors on the DC’s surface also revealed condition specificity as | identified 60

receptors from healthy and 48 receptors from diseased cells [Figure 5.7].
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PTN VCAM1
B2M
CDH1 LGALS3
PCNA cCcL19
ITGAV FGF2
TFRC ITGB2

Figure 5.7: Overlap of epithelial cell secreted ligands and DC expressed receptors in healthy
(green) and periodontitis (red) conditions. The condition specific ligands (genes coding them) are
listed on the left side.

| connected the ligands to the receptors which resulted in 313 LRlIs in the healthy gum and 328
LRIs in periodontitis. | visualised the interactions on a circos plot [Figure 5.8]. In OmniPath,
some proteins have both receptor and ligand annotations, thus, | discarded these

multifunctional points when creating the plot.

| compared the receptors on the target cell surface not only by their presence or absence but
also by their role in signalling pathways (Innate immune system-related-, JAK/STAT-, Notch-,
Receptor Tyrosine Kinase (RTK)-, WNT- and TLR signalling) using information from
SignaLink3. | found that there is no difference on the pathway level, however, the signalling
components vary between conditions. Most of the LRIs have an effect on TLR signalling, while

only a few are related to the Notch pathway [Figure 5.8].
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A,

Receptors on DCs

Receptor pathway [ Immune JAK/STAT |EEEE Notch Other
B RTK BN TGF-beta [ WNT

Figure 5.8: Condition-specific connections between epithelial cell ligands (upper semicircles,
black) and DC receptors (lower semicircles, coloured by pathways) in A, healthy control and B,
severe periodontitis. Inmune—innate immune response, RTK—receptor tyrosine kinase, TLR—Toll-
like receptor. Circos plots were created by using the ‘circlize’ R package 325,
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As a complementary analysis, | examined the changes in the perturbed signalling by the

Reactome database, but | extended the analysis to the first neighbours of the receptors (ie.,
the direct protein interactors of the receptors) [Table 5.4 (p < 0.05, FDR = 5.11E)]. Results

suggest that most of the signalling overlap between conditions but there are condition-specific

differences, such as Notch signalling in healthy gum and death receptor signalling and Myd88-

independent TLR4 cascade in severe periodontitis.

Table 5.4: Top 10 signalling pathways represented among the receptors and their
first neighbours

Healthy condition

Periodontitis

Signalling by CSF3 (G-CSF)

Signalling by CSF3 (G-CSF)

Inactivation of CSF3 (G-CSF) signalling

MyD88-independent TLR4 cascade

Constitutive Signalling by NOTCH1 PEST | TRIF(TICAM1)-mediated TLR4 signalling

Domain Mutants

Signalling by NOTCH1 Interleukin-3, Interleukin-5 and GMCSF
signalling

Interleukin-3, Interleukin-5 and  GMCSF | Toll-Like Receptor 4 (TLR4) Cascade

signalling

TRIF(TICAM1)-mediated TLR4
signalling

Interleukin-4 and Interleukin-13 signalling

Interleukin-4 and Interleukin-13
signalling

Death Receptor Signalling

Toll-Like Receptor 3 (TLR3) Cascade

Signalling by Interleukins

VEGFA-VEGFR2 Pathway

Toll-like Receptor Cascades

MyD88-independent TLR4 cascade

Cytokine Signalling in Immune system
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5.4 Discussion

The microbiome plays an important role in homeostatic processes in the host therefore the
altered community composition leads to differences in host signalling *'. Currently, there are
no studies which explore the role of complex microbiota on epithelial cell signalling and also
infer cell-cell signalling networks between the epithelial and immune cells to explore the role
of altered intercellular communication during inflammation. In this chapter, | presented a use
case of the developed host-microbe and intercellular interaction pipelines to highlight the role
of the microbiome in subgingival plaque on host inflammatory processes. Cell type- and
condition-specific gene expression profiles lead to rewired protein-protein interactions between

microbes and the host.

| analysed a publicly available single-cell transcriptomic dataset and combined it with network
resources to establish a host-microbe interactome between a limited list of bacteria dominantly
appearing in healthy condition or severe periodontitis and epithelial cell from the marginal part
of buccal gingiva. Besides, | created cell-cell interactomes focusing on LRIs between epithelial
and dendritic cells to show the indirect role of the altered microbiome on immune system

modulation during severe periodontitis.

In general, the host-microbe interaction prediction revealed a potentially decreasedamount of
PPIs in the diseased state. In a healthy state, host-microbe interactions are often beneficial to
both the host and the microbe. The microbe may help to maintain a balance of the host's gut
microbiome, for example, by competing with other microbes for resources or by producing
molecules that modulate the host's immune response. In contrast, in a diseased state, the
host's immune system may respond more strongly to the presence of the microbe, leading to
inflammation and tissue damage. This increased immune response can disrupt the normal
interactions between the host and microbe, making it difficult for the microbe to survive in the
host. Additionally, the microbe itself may produce toxins or other virulence factors that
contribute to the disease state, further disrupting host-microbe interactions. Also, the microbe
may avoid the host immune system by mutating, changing surface proteins, and hiding inside
host cells. Therefore microbes may evade detection and reduce host-microbe interactions and

in a diseased state, the number of host-microbe interactions is less than in the healthy state.

The results highlighted several already published responses, such as the activated MAPK

495,496

cascade during periodontitis leading to cytokine secretion and the central role of the TLR

pathway upon infection and inflammation “°74%, but | also found surprising outcomes of the
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analysis. Firstly, the established host-microbe interaction networks showed differences in
terms of the number of their host targets. | found a low number of membrane-based targets (8)
during periodontitis due to the limited number of interacting bacterial proteins (31). Because
pathogenic bacteria have more potential domains to reach the host proteins | assume that
some pathogen-specific domains can not be found in the ELM or 3did database, therefore
these structural elements can not be part of the prediction **°. Secondly, the Notch signalling
came up several times during the analysis, as a pathway affected by the healthy microbes.
Notch pathway is important in cell differentiation and essential for bone development. Recently,
researchers identified the altered Notch signalling contributing to severe periodontitis.
Experiments show that a lower level of NOTCH1 is related to periodontitis in patients %001,
The analysis of expressed ligands by epithelial cells supported this statement by identifying
NOTCH1 as a healthy condition-specific ligand. Thirdly, functional analysis of the microbiome
triggered downstream signalling showed that B cell activation and differentiation is affected
and T cell activation is negatively regulated in healthy condition while in periodontitis the
proliferation of CD8+ alfa-beta T cells is enhanced in epithelial cells. This T cell subpopulation
expresses the alfa and beta chains of the T cell receptors and is responsible for MHC-I complex
recognition [details in Chapter 1] and for the elimination of malignant/infected cells *2. In terms
of the affected B cell differentiation and activation, studies show that the amount of B cells is

d 592-%07  There is no

low in healthy gum and also mostly memory B cells are represente
information about the effect of proteins on B cell signalling but based on the literature the B
cell activation pathway should be negatively regulated and the differentiation shifted towards
memory B cell production.

Furthermore, several cytokine-related pathways were found among the affected proteins in
periodontitis. Although | identified proteins playing a role in the positive regulation of IL12
secretion, this cytokine is expressed exclusively by immune cells. Because cytokine signalling
is a complex network consisting of pathways which are cross-talking, potentially those proteins
have been highlighted here which play a role in other cytokine secretion pathways, such as
IL6 or IL23 expression. Experiments support the fact that IL6 and IL23 expression by epithelial
cells is enhanced in gingiva when Porphiromonas gingivalis - a member of the red complex -

is presented in the microbiome #%#°%,

The functional analysis highlighted that DC chemotaxis is among the periodontitis-specific
processes triggered by HMIs downstream that assumes an altered communication between
the gingival epithelium and DCs. This finding drove me in the direction of observing a potential

altered communication between epithelial and dendritic cells during periodontitis.
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The migration of these immune cells is usually caused by the interaction of chemokines and
DC receptors. Such an interaction takes place between CCL19 chemokine and the CCR7
receptor which has been identified in the intercellular communication analysis [Figure 5.8] °*°.
Although results show that the number of LRIs did not change between conditions, the type of

intercellular communication was altered.

| used two resources, SignalLink3 and Reactome, to analyse the role of epithelial ligand-
affected receptors (and their first neighbours in Reactome analysis) in different signalling
pathways. Both of the examinations revealed TLR signalling, as the most affected pathway in
the intercellular network. Not surprisingly, TLRs are important receptors on the surface of DCs,
especially during pathogen infection, controlling cytokine secretion °%°. One of the most
important differences among the affected receptors contributing to TLR signalling activation is
the healthy gum-related expression of the CD46 co-receptor. A recently published study
highlights the role of this receptor in the downregulation of CXCL-10 inflammatory chemokine
in DCs 5'° which shows the control of the host inflammation processes in a homeostatic state.
In contrast, analysis of peridontitis-derived samples revealed the unique expression of killer-
cell immunoglobulin-like receptors (KIR) on the surface of DCs. KIRs are able to sense
pathogens and activate cytokine expression usually on the surface of Natural Killer cells, but

literature provides information about its expression in DCs as well *'".

Whilst providing new and potentially important insights into the altered microbiome composition
and its effect on inflammation, the analysis has several limitations: (1) the lack of metadata
resulted in the examination of the whole proteomes in each bacterial strain, (2) at the time of
the analysis only one scRNAseq dataset was available to explore gene expression in healthy
and severe periodontitis derived gingival cells, (3) the number of patients was low, only four.
The detailed limitations of the intercellular interaction and MicrobioLink2 pipelines are
described in Chapter 2 and Chapter 3.

Despite these challenges, the use case provides a deeper insight into the effect of the altered
microbiome on host immunity at the protein level. In addition to predicting the affected host
processes supported by the literature, | was able to reveal the molecular background and the
key points in the signalling networks which facilitates the identification of new targets for

experimental validation.
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Chapter 6: Perspectives and final discussion

The epithelial layer establishes a tightly connected barrier separating the microbes from the
body, including most of the immune cells. To maintain homeostasis, these epithelial cells
communicate with the nearby immune cell populations. Understanding the interspecies host-
microbe and the epithelial-immune intercellular interactions is crucial because their altered
interactions lead to inflammation in host tissues. During my PhD, | aimed to develop
computational workflows that examine interactions between the microbiome, the epithelium
and the immune system. | chose inflammation-related diseases in the gastrointestinal tract as

case studies for in silico analyses.

Intercellular interactions are essential for developing and growing multicellular organisms. It is
well-studied that the communication between epithelial and immune cells coordinates
responses to maintain homeostasis and prepare host defence *'?. Nevertheless, recent studies
revealed that fibroblasts are also important components in immune cell regulation and

modulate locale immune response °'3.

In Chapter 2, | presented an in silico intercellular interaction workflow to explore cell-cell
interactions in healthy and diseased conditions. As part of this project, | worked on the update
of the OmniPath database, a resource contributing to understanding cell-cell signalling at the
molecular interaction level. Researchers can ask fundamental questions about cellular
communication or physical cell-to-cell interactions and address them by using OmniPath
combined with single-cell data analysis. To demonstrate the LRI pipeline, | analysed public
single-cell transcriptomic data *'? from healthy and ulcerative colitis (UC) patients. UC is a
subtype of inflammatory bowel disease (IBD) where the colon and rectum become inflamed.
Cell-cell interactions are rewired during the disease *'2, however, a limited number of studies
share proof of the altered intercellular communications. The developed LRI pipeline revealed
essential information about cell-cell connections in disease, such as the shift of target cells
from the dendritic cells (DCs) in the healthy colon to regulatory T cells (Tregs) in diseased
samples. Also, the focused myofibroblast-Treg interaction analysis showed the central role of
the target cells to switch between pro- and anti-inflammatory signalling pathways depending

on the interacting myofibroblast’s ligands.

129



The microbiome plays an essential role in homeostatic processes too. The microbial
community consists of both commensal and harmful microbes but these species are often in
an equilibrium state in healthy conditions. Studies show that dysbiosis disturbs this balance
and contributes to inflammation and the appearance of diseases, such as gingivitis in the oral
cavity or inflammatory bowel disease in the gut . However, the current knowledge about the
molecular details of how pathogens modulate inflammation-related pathways is still limited *'“.
In Chapter 3, | presented MicrobioLink2, an in silico host-microbe interaction prediction
algorithm that facilitates the understanding of cross-species interplays and their downstream
effect on host signalling including inflammatory processes. This integrated approach is also
capable of pointing out key microbial inferences, and cellular pathways transmitting normal
microbial signals. The structural composition-based approach highlights the exact bacterial
domains and their target motif on host proteins that gives a detailed insight into the mechanism

of the protein-protein interactions.

Although there has been a steeply increasing amount of data in IBD research, patients still
suffer from life-long symptoms. Current therapies aim to keep patients in a clinical remission
state by suppressing the symptoms. The drawback of these treatments is that patients’
intestinal tract is still exposed to inflammation that could lead to long-term problems, such as
colon cancer °'°. The knowledge about gut microbiome composition is expanding due to the
elevated number of meta-omic datasets but also host response becomes more understandable
with the use of single-cell analysis. The established pipelines attempt to predict new

therapeutic targets to treat IBD patients.

Interspecies interactions are crucial for the initiation and progression of periodontal diseases.
Pathogens secrete proteases and endotoxins to destroy the extracellular matrix and trigger an
inflammatory response. There is direct evidence for the contribution of the altered microbial

film around the teeth to pro-inflammatory cytokine secretion by gingival cells .

The pathomechanism of the two diseases is different, but the effect of interspecies connections

plays a fundamental role in inflammatory processes °'¢5"7

. Dysregulation of the cellular
behaviour in epithelial cells results in altered cytokine secretion and potential infiltration of
bacteria into the lamina propria by disrupted cell-cell interactions. Both processes generalise
inflammatory response resulting in high levels of pro-inflammatory cytokines %285 |n the
early 1990s, researchers described that patients suffering from IBD have periodontitis with a
higher prevalence °%°. The co-occurrence of the disease is high, and the gum inflammation is
more severe in IBD patients °*'. Periodontitis and IBD are multifactorial diseases, sharing

factors involved in the pathogenesis (e.g. smoking, diet), microbiological impact, and immuno-
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inflammatory response. Both diseases are characterised by a shift to Gram-negative bacteria

52

in the microbiome °*2. Besides, a few microbes (Campylobacter rectus, Porphyromonas

gingivalis and Tannerella forsythia) appear in inflamed gingiva and are enriched in IBD °2%°%,
Several papers explore the connection between oral and gut inflammation 520:521525-529 1yt sill,

there are conflicting results, indicating a complex, personalised pathomechanism of diseases.

Case studies revealed the central role of the Toll-like receptor (TLR) pathway during
inflammation from different perspectives. In fact, it has been known from the literature years
ago, but the pipeline gave an insight into the cell and condition specificity of the pathway. In
Chapter 2, | revealed that different parts of the signalling were enriched in Tregs under diverse
conditions. In healthy colon the TLR2/6 and TLR7/8 signalling, while in UC patients the TLR3
and TLR4 receptors-mediated signalling were enriched. In Chapter 4, | modelled the TLR
pathway in several immune cell (sub)populations under healthy and UC conditions in presence
of gut commensal bacteria. This approach introduced the TLR signalling on the level of
molecular interactions. | combined the signalling network with single-cell data to observe the
expression of pathway members in various immune cell types and showed altered interactions
with the bacteria. Finally, in Chapter 5, | examined the affected cellular pathways in epithelial
cells and DCs in the gingiva. Results showed that the TLR pathway is affected by HMIs on the
cell surface of epithelial cells during periodontitis. Not surprisingly, in DCs TLR pathway was
triggered by epithelial ligands in both conditions, however diverse sets of receptors were

activated.

The appearance of meta-omics and single-cell transcriptomic data allowed the implementation
of multi-omics data analysis pipelines. To take advantage of the information about microbiome
composition details, | could fill a gap in the current knowledge to better understand the
pathomechanisms of bacterial communities on host cells and highlight differences in cell type
levels. Hopefully, there will be more paired multi-omics data available soon, describing both
meta- and host data from the same samples that can be analysed seamlessly and efficiently
with the developed pipelines. Contributing to OmniPath established a new direction for my
project and gave me a strong base for intercellular analysis. All in all, in my PhD projects, |
predicted interactions and effects that got validated from existing literature, such as the central
role of TLR pathway in inflammation. However, | also revealed cell-specific differences in
inflammation, such as the healthy condition-related expression of TIRAP adaptor protein - a

potential new therapeutic target for IBD treatment - in one of the DC subpopulations.
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The prediction of protein-protein interactions has been improved in the last few years as more
and more machine learning based approaches came to light. These approaches use
computational models trained on large sets of known PPIs to predict new interactions. There
are several categories of machine learning approaches used in PPI prediction, including deep
learning methods that use neural networks to model the sequence, structure, or both of the
interacting proteins (e.g. DWPPI tool °*°). They have shown to be very effective models,
achieving high accuracy and outperforming traditional methods °*. The field is constantly
evolving and new methods are being developed and tested to improve the performance of PPI

prediction.

AlphaFold2 is a protein structure prediction algorithm developed by the European Molecular
Biology Laboratory and the University of Washington. It uses deep learning techniques to
predict the 3D structure of a protein from its amino acid sequence. AlphaFold2 was announced
in 2018 as a significant improvement over the original AlphaFold algorithm, achieving near-
experimental accuracy in many cases **. The algorithm has been used in a number of
research studies and has the potential to aid in drug discovery and the design of new

biomaterials 531933,

While the original aim of AlphaFold is to predict 3D protein structures, bacterial domains can
also be inferred with the algorithm by uploading the bacterial protein sequence to the
webservice (https://alphafold.org/). It's important to keep in mind that the accuracy of the
prediction will depend on the specific input, and the quality of the prediction may vary for
different bacterial domains. Therefore, it's recommended to validate the predictions using

experimental methods, if available.

| have plans to improve MicrobioLink2 in the near future by extending the model with predicted
bacterial domains coming from AlphaFold to increase the number of potential host-microbe
PPIs. Besides, | would like to include the detection of cross-species interplay to bacterial
metabolite-human protein interactions in MicrobioLink, and focusing more on the role of small
molecules on host cell receptor activation. The microbiome is a dynamic community, bacteria
secrete metabolites to ‘communicate’ with each other therefore facilitating co-occurrence or
modulating competition between strains 4. A dysbiotic condition leads to altered microbiota
composition, which has an effect on the robustness and connectivity of microbial interaction
networks °%. Network fragility modelling reveals the association between microbes in a
community based on meta-omics (metataxonomics, metagenomics) analysis . Fragility
measures how easy it is to disrupt the network and how coherent is the connection between

the bacterial species/strains **’. On the one hand, altered metabolic secretion - as an outcome
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of dysbiotic communities - affects differently the human tissue/cells which are inhabited by the
community %%, On the other hand, the perturbed host cell signalling may lead to altered
metabolite secretion which, reflecting the changes, interacts with the microbiome °*. Based
on these assumptions, there is a potential and exciting connection point between the bacteria-

bacteria and host-microbe interactions that | would like to discover later.

Microbiome analysis became a hot research area recently, as researchers found that the
disrupted community potentially leads to diseases. Recently, | had the opportunity to write a

539

preview article to Cell about a very interesting article examining the role of the skin

microbiome in vector-borne disease transmission %4,

The main outputs of my PhD work are the following:

e Established workflows to analyse single-cell data and build up cell type- and condition-

specific networks

e Making an impact on cell-cell connection analysis by the development of the
intercellular interaction pipeline and contributing to OmniPath, a gap-filling resource to

study the intercellular interplay

e Developed the MicrobioLink2 pipeline that examines host-microbe interactions from a
new perspective including the downstream effect of complex microbiomes on host

signalling

e The developed workflows have already been used within my research group for current

and future projects.

During my PhD, | published the updated OmniPath and intercellular interaction pipeline in
Molecular Systems Biology [Chapter 2] 7. The case study in Chapter 4 appeared in the
Journal of Extracellular Vesicles beginning of this year **’. Both of these journals are the
premier journals in their respective fields. We were recently invited to submit the MicrobioLink2

pipeline to Cell Press’s STAR Protocol journal.

The COVID-19 pandemic strongly affected my research between 2020 - 2022. Our research
group established several side projects to study the effect of the virus on human signalling
pathways. We developed the ViralLink pipeline published in PLoS Computational Biology **',
studied the effect of Sars-CoV-2 on epithelial-immune cell interactions appeared in npj

Systems Biology and Applications °*?, and cytokine expression in Frontiers in Immunology '*?,
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and finally, we established a cytokine communication map, called CytokineLink published in
Cells, to model cytokine-cytokine interactions %%, | contributed to these projects with the
MicrobioLink2 and the intercellular interaction pipelines, therefore there is no separate chapter
for these studies. | hope that these articles will reach other research communities and the

pipelines will be used/improved by them as well.

| contributed to autophagy-related publications during the first two years of my postgraduate
studies. | had the possibility to co-work on a review in Frontiers in Cell and Developmental
Biology about available databases, and resources in the field of autophagy research >, Later,
| published as a joint-first author my Master's thesis in the Disease Models and Mechanisms
Journal about proteomic data analysis derived from organoids exposed to impaired autophagy
compared to control systems 5*°. Also that year, we examined the effect of bacterial pathogens
on the autophagy process and published it in the Autophagy journal *’°. Finally, | was involved
in the development of the SignaLink3 database published in the Database issue of Nucleic

Acids Research '6°.

As an iCASE PhD candidate, | worked together with Unilever, the industrial collaborator of the
PhD. They were interested in host-microbe interactions in healthy and inflamed gingiva and
scalp. Due to the lack of public microbiome and host transcriptomics data from the scalp, |
focused on data analysis in the gingiva and provided the MicrobioLink2 pipeline for internal
commercial purposes at Unilever. Following a handover session during my placement,
Unilever is capable of running the pipelines with their confidential data. This was a key

objective in the original iCASE project agreement.

In conclusion, the thesis provides methodological and biological advancement in the field of
cell biology and cellular microbiology. The developed pipelines give mechanistic insight into
host-microbe interactions and their effect on epithelial and immune cell signalling, including
the context of inflammation-related diseases. The case examples reveal the high connectivity
of factors that have an effect on inflammation and an outstanding need for such computational
analysis and in silico workflows. Due to a lack of experimental validations, my aim was not
necessarily to highlight potential new signalling pathways in inflamed conditions. | aimed to
explore the molecular background of the currently known implications of pathogen-associated
inflammation and extend it to the individual cell level. The highlighted limitations identified the
project's next steps and future directions. The improved pipeline should lead to a better
understanding of homeostasis and drive the development of targeted approaches for

preventing and treating dysbiosis-related disorders such as periodontitis and IBD.
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Appendix 1: Supplementary material

Supplementary Table 2.1: Number of condition-specific intercellular PPls
Source cell Target cell Healthy condition UC condition Difference
Goblet cell Myofibroblast 343 316 27
Goblet cell Dendritic cell 654 166 488
Goblet cell Regulatory T cell 450 486 36
Goblet cell Macrophage 416 266 150
Myofibroblast  |Goblet cell 458 206 252
Myofibroblast Dendritic cell 653 164 489
Myofibroblast Regulatory T cell 472 478 6
Myofibroblast Macrophage 428 254 174
Dendritic cell Goblet cell 372 158 214
Dendritic cell Myofibroblast 253 250 3
Dendritic cell Regulatory T cell 355 343 12
Dendritic cell Macrophage 299 182 117
Regulatory T cell|Goblet cell 427 183 244
Regulatory T cell|Myofibroblast 304 286 18
Regulatory T cell|Dendritic cell 610 146 464
Regulatory T cell|Macrophage 365 217 148
Macrophage Goblet cell 622 272 350
Macrophage Myofibroblast 456 428 28
Macrophage Dendritic cell 865 218 647
Macrophage Regulatory T cell 450 486 36
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Supplementary Table 2.2: Top ten overrepresented pathways in upstream Treg

signalling network

Healthy condition

Non-inflamed UC

Pathway Entities | Entities | Pathway Entities | Entities
found total found total

Signaling by RAS mutants |30 54 MyD88-independent TLR4|q, 97
cascade

Signaling by moderate kinase 30 54 TRIF(TICAM1)-mediated 62 97

activity BRAF mutants TLR4 signaling

Signaling downstream  of Toll Like Receptor 3

RAS mutants 30 54 (TLR3) Cascade 61 93

Paradoxical activation of RAF

signaling by kinase inactive | 30 54 VEGFA-VEGFR2 Pathway|62 98

BRAF

Oncogenic MAPK signaling |43 93 Transcriptional Regulation), 367
by TP53

Toll Like Receptor

TLR6:TLR2 Cascade 52 118 Cell Cycle 228 651

MyD88:MAL(TIRAP) Er);snesadsuecs’;ion ot]; Sr:?thil

cascade initiated on plasma |52 118 y 9 168 393
factor  receptors and

membrane
second messengers

Toll Like Receptor 2 (TLR2) Signaling by  NTRK1

Cascade 52 121 (TRKA) 69 117

Toll Like Receptor 7/8 RNA Polymerase Il

(TLR7/8) Cascade ar 103 Transcription 390 1379

Toll Like Receptor Generic Transcription

TLR1:TLR2 Cascade 52 121 Pathway 359 1257
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Supplementary table 5.1: Number of bacterial proteins derived from UniProt

Proteome
Condition Strain Number of proteins
Streptococcus sanguinis SK36 2269
2010
Healthy gum Haemophilus parainfluenzae ATCC 33392
Lautropia mirabilis ATCC 51599 2665
Veillonella parvula ATCC 10790 1843
Treponema denticola ATCC 35405 2753
Porphyromonas gingivalis ATCC BAA-308 1863
Periodontitis
Tannerella forsythia ATCC 43037 2978
Filifactor alocis ATCC 35896 1616
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Abstract

Molecular knowledge of biological processes is a cornerstone in omics
data analysis. Applied to single-cell data, such analyses provide mech-
anistic insights into individual cells and their interactions. However,
knowledge of intercellular communication Is scarce, scattered across
resources, and not linked to intracellular processes. To address this
gap, we combined over 100 resources covering interactions and roles
of proteins in inter- and intracellular signaling, as well as transcrip-
tional and post-transcriptional regulation. We added protein complex
Iinformation and annotations on function, localization, and role in
diseases for each protein. The resource is available for human, and
via homology translation for mouse and rat. The data are accessible
via OmniPath’s web service (https://omnipathdb.org/), a Cytoscape
plug-in, and packages in R/Bioconductor and Python, providing access
options for computational and experimental scientists. We created
workflows with tutorials to facilitate the analysis of cell-cell interac-
tions and affected downstream intracellular signaling processes.
OmniPath provides a single access point to knowledge spanning intra-
and intercellular processes for data analysis, as we demonstrate in
applications studying SARS-CoV-2 infection and ulcerative colitis.

Keywords intercellular signaling; ligand-receptor interactions; omics integra-
tion; pathways; signaling network

Subject Categories Computational Biology; Methods & Resources; Signal
Transduction
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Introduction

Cells process information by physical interactions of molecules.
These interactions are organized into an ensemble of signaling

pathways that are often represented as a network. This network
determines the response of the cell under different physiological and
disease conditions. In multicellular organisms, the behavior of each
cell 1s regulated by higher levels of organization: the tissue and, ulti-
mately, the organism. In tissues, multiple cells communicate to
coordinate their behavior to maintain homeostasis. For example,
cells may produce and sense extracellular matrix (ECM), and release
enzymes acting on the ECM as well as ligands. These ligands are
detected by receptors in the same or different cells, that in turn trig-
ger intracellular pathways that control other processes, including
the production of ligands and the physical binding to other cells.
The totality of these processes mediates the intercellular communi-
cation in tissues. Thus, to understand physiological and pathological
processes at the tissue level, we need to consider both the signaling
pathways within each cell type as well as the communication
between them.

Since the end of the nineties, databases have been collecting infor-
mation about signaling pathways (Xenarios et al, 2000). These data-
bases provide a unified source of information in formats that users
can browse, retrieve, and process. Signaling databases have become
essential tools in systems biology and to analyze omics data. A few
resources provide ligand-receptor interactions (Kirouac et al, 2010,
Fazekas et al, 2013, Ramilowski et al, 2015; Armstrong et al, 2019;
Efremova et al, 2020). However, their coverage is limited, they do not
include some key players of intercellular communication such as
matnix proteins or extracellular enzymes, and they are not integrated
with intracellular processes. This Is increasingly important as new
techniques allow us to measure data from single cells, enabling the
analysis of inter- and intracellular signaling. For example, the recent
CellPhoneDB (Efremova et al, 2020) and ICELLNET (Noél et al, 2021)
tools provide computational methods to prioritize the most likely
intercellular connections from single-cell transcriptomics data, and
NicheNet (Browaeys et al, 2019) expands this to intracellular gene
regulation. A comprehensive resource of inter- and intracellular
signaling knowledge would enhance and expedite these analyses.
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To effectively study multicellular c ication, a urce
should (i) classify proteins by their roles in intercellular communi-
cation, (l) connect them by interactions from the widest possible
range of resources, and (ili) integrate all this information in a trans-
parent and customizable way, where the users can select the
resources to evaluate their quality and features, and adapt them to
their context and analyses. Prompted by the lack of comprehensive
efforts addressing principle (i), we built a database on top of Omni-
Path (Tured et al, 2016), a resource which has already shown the
benefits of principles (i) and (). The first version of OmniPath
focused on literature curated intracellular signaling pathways. It has
been used in many computational projects and omics studies. For
example, to model cell senescence from phosphoarray data (An
et al, 2020), or as part of a computational pipeline to predict the
effect of microbial proteins on human genes (Andrghett et al,
2020), and a community effort to integrate knowledge about the
COVID-19 disease mechanism (Ostaszewski er al, 2020). The new
OmniPath extends its scope to intercellular communication and its
integration with intracellular signaling, providing prior knowledge
for modeling and analysis methods. It combines 103 resources to
build an integrated database of molecular interactions, enzyme-PTM
(post-translational modification) rel hips, protein compl
and annotations about intercellular communication, and other func-
tional attnibutes of proteins.

We demonstrate with two case studies that we provide a versa-
tile resource for the analysis of single-cell and bulk omics data.
Leveraging the intercellular communication knowledge in Omni-
Path, we present two examples where autocrine and paracrine
signaling are key parts of pathomechanism. First, we studied the
potential influence of ligands secreted in severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection on the inflamma-
tory response through autocrine signaling. We identified signaling
mechanisms that may lead to the dysregulated inflammatory and
immune response shown in severe cases. Second, we examined
the rewiring of cellular communication in ulcerative colitis (UC)
based on singlecell data from the colon. By analyzing down-
stream signaling from the intercellular interactions, we found
pathways assoclated with the regulatory T cells targeted by
myofibroblasts in UC.

Results

We used four major types of resources: (i) molecular interactions,
(i) enzyme-PTM relationships, (ili) protein complexes, and (iv)
molecule annotations about function, localization, and other attri-
butes (Fig 1A). The pypath Python package combined the resources
from those four types to build four corresponding integrated data-
bases. Using the (! pypath piled a fifth database
about the roles in intercellular communication (intercell; Fig 1B).
The ensemble of these five databases is what we call OmniParh,
combining data from 103 resources (Fig 1A and Dataset EV1).

A focus on intercellular signaling

To create a database of intercellular communication, we defined the
roles that proteins play in this process. Ligands and receptors are
main players of intercellular communication. Many other kinds of
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have a great impact on the behavior of the cells, such as
matrix proteins and transporters (Fig 2A). We defined eight major
(Fig 2) and 17 minor generic functional categories of intercellular
signaling roles (Datasets EV6 and EV10). We also defined ten loca-
tional categories (e.g., plasma membrane peripheral), using in addi-
tion structural resources and prediction methods to annotate the
transmembrane, secreted and peripheral membrane proteins.
Furthermore, we provide 994 specific categories (e.g., neurotrophin
receptors). Each generic category can be d by resource (e.g.,
ligands from HGNC) or as the combination of all contributing
resources (Fig EV4). To provide highly curated annotations, we
checked every entry in each category manually against UniProt data-
sheets to exclude wrong annotations. Overall we defined 1,170 cate-
gories and provided 54,330 functional annotations about
intercellular communication roles of 5,781 proteins.

We collected the proteins for each intercellular communication
functional category using data from 27 resources (Fig 2B, Dataset
EV6). Combining them with molecular interaction networks from 48
resources (Dataset EV2), we created a corpus of putative intercellu-
lar communication pathways (Fig 2C). To have a high coverage on
the intercellular melecular interactions, we also included ten
resources focusing on ligand-receptor interactions (Figs 3 and EV1).

Many of the proteins in | dlular com Ication work as
parts of complexes. We therefore built a comprehensive database of
protein complexes and inferred their llular ¢ icatl

roles: a complex belongs to a category If and only if all members
of the complex belong to it. We obtained 14,348 unique, directed
transmitter-recelver (e.g., ligand-receptor) connections, around
seven times more than the largest of the resources providing such
kind of data. We also mapped a textbook table (Cameron & Kelvin,
2013) of 131 cytokine-receptor interactions to the ligand-receptor
resources. As the textbook contains well-known interactions, many
of the resources cover more than 90% of them (Fig 2D). This large
coverage Is achieved by not only integrating ten ligand-receptor
resources, but also complementing these with data from annotation
and Interaction resources.

An essential feature of this novel resource is that it combines
knowledge about intercellular and intracellular signaling (Table 1).
Thus, using OmniPath one can, for example, easily analyze the
intracellular pathways triggered by a given ligand or check the tran-
scription factors (TFs) and microRNAs (miRNAs) regulating the
expression of such ligands.

OmniPath: an ensemble of five databases

The abovementioned intercellular database exists in OmniwPath
together with four further databases (Fig 1B), supporting an inte-
grated analysis of inter- and intracellular signaling.

The network of molecular interactions

The nerwork database part covers four major domains of molecular
signaling: (i) protein-protein interactions (PPI), (i) transcriptional
regulation of protein-coding genes, (iii) mIRNA-mRNA interactions,
and (iv) transcriptional regulation of miRNA genes (TF-miRNA).
We further differentiated the PPI data into four subsets based on the
interaction mechanisms and the types of supporting evidence: (i)
literature curated activity flow (directed and signed; corresponds to
the original release of OmniPath; Turel et al, 2016), (il) activity flow

2021 The Authors

178



Dénes Ture et al

Unified network of pathways
with annotations

Original resources Network Enzyme-PTM Complexes  Annotations
& 61 11 12 =49
103 . _
RS B meewe ggiwe
.
Database build pypath (Python module) @ python
Database Network Enzyme-PTM (-:omplmm Annotations  Intercell
Web service:
Query interfaces

htip://omnipathdb.org/ .B‘
N N

HTTP (curl,  R/Bioconductor

browser, etc)

Downstream methods

N~ N NS
Cytoscape
(Omnlpatnﬁ)
—_———————
Applications

Python
client

- N T N TN N
Figure 1. The composition and workflow of OmniPath.
A Datab

Third party software (modeling, network analysis, etc)
with the r

OmniPath

number of r

le by the d.

in
builder

omnipath, the Cytoscape plug-in and can be exportad to formats such as Biokgical Emmsslnn Language (BEL).

B worlﬁow and daon OmnePath is based on four major types of resources, and the pypuh Pﬂ.hon package combines the resources to build five databases. The
pypath, the wed
€ 2021 The Authors

org/. the R package OmnipathR, the Python chent

Molecular Systems Biclogy 17 e3323 | 2021

30f16

179

Molecular Systems Biology



Molecular Systems Biology

with no literature references, (i) enzyme-PTM, and (iv) ligand-
receptor interactions (Fig 3A-C). Interaction data are extensively
used for a varlety of purposes: for building mechanistic models,
deriving pathway and TF activities from transcriptomics data and
graph-based analysis methods. In total, the resource contained

Deénes Turei et al

103,396 PPI interactions between 12,469 proteins from 38 original
resources (Dataset EV2). The large number of unique interactions
added by each resource underscores the importance of their integra-
tion (Figs EV1 and EV2, Appendix Fig $1). The interactions with
effect signs, essentlal for mechanistic modeling, are provided by the

A B Thong2015 + » . .
LhiProt Jocalion  + ..
Wit keponss  + . » - o
Suracome . . -
100 .
o Famllopdd2015
- Ramilowski_jocation +
(U I
Cooio== ManpB .
3 -“"-. Matfzome ?
—0ee LRdt . .
{ Kifouac2010
o o 4 .= g K P
() ICELLNET . .
¢ & HPNR .
5 HBNC . IEEEREE I .
- Bulde?Phanma . .
° A W& Adhesion @ GO_irfiercell o0 o ssesmOese
o0 © il Secreted enzyme @ EVBANCE oo
° HExtracellular matrix @ P d IEERSED! ?
67 HLigand @ | caicellimemcions i 8
“ “ [ Receptor @ Baccin2010 . . o
- W Surface enzyme @ Amen29 1 1 9 g
“ g iSur;acellgaﬂd o tmirzh @000 0 0000 -0
f( @ Transporter @ Number of gs,sgigsg s“% 5
N proeins . €3 § f'is ;g H
. 250 a -
-4 9 10 c; fBED g8 £°lena
® 1000 gsS Wi &
® 200 Y intercellutar
communication roles
Cc D
Koae O @ | ]
¢ Cell surface  icamer & @ |
» Receptor i enzyme cudezrr O @ ]
Proteins: 2,295 g:lnei:;s:eessza HPAR - .
! o5 -
C.«nplaxes.sos 4 ’ CellPhore @ [ |
u Il;rlogtgrrLGQN ® Cell surface  enemsce © o 1
- 1 g
Complexes: 556 . E,%g{:g o Baccin » & n
, : Ramilowski & [ ]
: Exhape"Nar g Complexes: 184 — a . -
p'mﬂif 620 ¢ ® Transporter LAdb e B
Complexes: 182 B proteins: 98246 CmniPath ]
Complexes:
e Secreted 10 100 1000 10000 0 100
i enzyme ® Adhesion Connections
Proteins: 632 Proteins: 863 shared () Tota
Complexes: 104 Complexes: 290 Coverage on textbook data [%]
Figure 2.
4 of 16  Molecular Systems iology  17: £9923 | 2021 £ 2021 The Authors

180



Dénes Turei et al Molecular Systems Biology

Figure 2. The sition and rep of the i rh

We assigned | ication roles to proteins based on from multipl Inalpands nsmettes; eIver.

A ill ofthe i ication roles and thesr possible :nnneﬂmns Cells are physically connected by proteins forming tight junctions (1),
gap punctions (2). and other adhesion proteins (3) they release vesices which can be taken up by other cells {4); some receptors form complexes {5} to detect secreted
kgands [6); transporters might alsc be affected by factors releasad by other cells (2} enzy leased into the dludar space act on ligands and the extracelular
matrix (7, S cells release the components of the extracellufar matrix and bind to the matnix by adhesion protens (10).

B The main intercellular communacation roles {x axis) and the major tnmnbuung resources (v axss). Size of the dots represents the number of proteins annotated to
have a certain role in a given resource. The darker areas rep the ps {p in more than one resource for the same role} while the lighter
color denotes those u'nque tc that resource.

C The llul, rk. The circle seg P the eight main intercellular communication roles. The edges are propertional to the number
of interactions in the OmniPath PR network connemrg preteins of one role to the other.

D Number of unique, directed transmitter-receiver (e g, ligand-receptor) connections by resources. Bars on the right show the ge of each ona
dataset of 131 well-known ligand-receptor interactions.

0 5000 10,000 15,000
Ligand receptor ® - s T o A e v
Interaction e e . i o e .
Enzyme-substrate e v v CHEE S o .
Activity flow oe u¥ oy > A | B
Post-translational - 3 = %Ay
Transeriptional @ Yu o
Post-transcriptional e o . »a ¢
TF-miRNe & @ Y

types and datasets

-

) o)

L <4 © O L L

z (43 o z
1 ) o

L) o L)

[ J [«

hukP OmriPsn o o uWrqa0 ] o0

1,000 10,000 10 100 100 100 0 100 1,000 10000

L Enzyme-PTM interactions )

Deecetfaten W Netyaton Deghogorngation Enzyme-PTM compiex
1 10 10 1,00 1m ot i

Compiest .
A e Muﬂm: © Cabofaten A Smofatien < Clenage Targetofthe  Salf +
: v © Lbiquithtien - Acetyision () Phagpheryisten ® Othersntity

Figure 3. @ ip of the rk and PTM

AL Networks by interaction types and the network datasets within the PPI network. {4) Number of nodes and interactions. The light dots represent the shared nodes
and edges (i more than one resource), while the dark ones show their total numbers. (B) Causality: number of connections by direction and effect sign. ()
Coverage of the networks on various groups of proteins. Dots shwv the percentage of proteins covered by network resources for the following groups: cancer driver
genes from COSMIC and IntOCen, kinases from kil from Ph net, ptors from the Human Plasma Membrane Receptome
(HPMR) and transcrption factors from the TF census. Cray blrs show the number of proteins in the networks. The information for individual resources s in
Figs EV1 and £V2, Appendx Fig S1.

D-C On each panel, the bottom rows rep: the bined plex and enzyme-PTM databases contained i OmniPath (D, E). Number of complexes (0} and
enzyme-PTM (E} interactions by resource. {F) Enzyme-PTM refationships by PTM type. {C) Enzyme-PTM interactions by ther target. Light, medum, and dark dots

represent the number of enzyme-PTM relationships targeting the enzyme itself, ancther protein within the same melecu lex oran i protein,
respectively.
£ 2021 The Authors tolecutor Systems Biology 17 esm23| 201 5 of 16

181



Molecular Systems Biology Deénes Turei et al

Table 1. Qualitative comparison of ligand-receptor and integrative databases.

Directed  Signs
Inter-  inter-  (positive/
actions  actions  negative)

Baccin2019 (e} no
CellCellinteractions no

Transcriptional  Intracellular

regulation

Integrative  Literature
complexes  resource curated

ne
ConsensusPathDB
EMBRACE (e)

no
no
no
no
no
no

Ramilowski2015
SignaLink

Omnifath combines resources to build & network with directions and effect signs, including intra- and intercellular signaling, transcriptional regulation, and
annotates proteins as ligands or receptors. Here, we show which of these features are covered by other databases: those specialized in ligand-receptor
interactions and two large integ rk datab (= PathDB and Pathway Commons). (2) Implicit if we assume always the ligand affects the
receptor; {b) As in some of the constituent resources the directions are implict, certain directions in the combined network are implicit; {¢) Provides not only
ligand and receptor annotation but further categories, for ple adhesion, L ECM, e1¢; {d) Apart from secreted (mostly ligand) and receptor provides
& few further categories: integrin, collagen, transmembrane, peripheral, etc; (€) Data are for mouse, homology translation s necessary to derive buman data; ()
For ligands, provides certain classification, eg. cytokine, ECM, secreted, etc; () Only in part is literature curated; (h) Ligand-receptor interactions are classified as
growth factor, cytokine, checkpoint, or other; (j) Contains transcriptional regulation but that part is not integrated by OmniPath; (j) OmniPath only integrates its

original literature curation, not the secondary resources; (k] Only builds on Ramilowski et al; (1) Besides ligand and receptor only ECM; (m) Directionality

information might be extracted from BioPAX.

activity flow resources (Appendix 1; Fig 3B). The combined PPI
network covered 53% of the human proteome (SwissProt), with an
enrichment of kinases and cancer driver genes (Fig 3C). The tran-
scriptional regulation data In OmniPath were obtained from
DoRothEA (Garcla-Alonso et al, 2019), a comprehensive resource of
TF regulons integrating data from 18 sources. In addition, six litera-
ture curated resources were directly integrated inte OmniPath
(Dataset EV8). The miRNA-mRNA and TF-miRNA interactions
were integrated from five and two literature curated resources, with
6,213 and 1,803 interactions, respectively. Combining multiple
resources not only increases the coverage, but also improves qual-
ity. It makes it possible to select higher confidence records based on
the number of resources and references. Cross-checking the interac-
tion directions and effect signs between resources reveal contradic-
tory information which is either a sign of mistakes or reflects on
limitations of our data representation (Appendix 1, Appendix Figs
S4). Overall, we Included 61 network resources in OmniPath
(Dataset EV2). Furthermore, pypath provides access to additional
resources, including the Human Reference Interactome (Luck er al,
2020), ConsensusPathDB (Kamburov er al, 2013), Reactome (Jassal
et al, 2020), ACSN (Kuperstein et al, 2015), and WikiPathways
(Slenter et al, 2018).

Enzyme-PTM relationships

In enzyme-PTM relationships, enzymes (e.g., kinases) alter specific
id of their sub producing so-called post-translational

modifications (PTM). Enzyme-PTM relationships are essential for
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deriving networks from phosphoproteomics data or estimating
kinase activities. We combined 11 resources of enzyme-PTM rela-
tionships mostly covering phosphorylation (94% of all) and dephos-
phorylations (3%) (Fig 3F). Overall, we included 39,201 enzyme-
PTM relationships, 1,821 enzymes targeting 16,467 PTM sites
(Fig 3E-G). Besides phosphorylation and dephosphorylation, only
proteolytic cleavage and acetylation account for more than one
hundred interactions. Most of the databases curated only phospho-
rylation, and DEPOD (Damle & Kohn, 2019) exclusively dephospho-
rylation. Only SIGNOR (Licata et al, 2020) and HPRD (Keshava
Prasad et al, 2009) contained a large number of other modifications
(Fig 3F). 0% of the interactions were described by only one
resource, and 92% of them by only one literature reference (Fig 3E).
Self-modifications, e.g., autophosphorylation and modifications
between members of the same complex comprised 4 and 18% of the
interactions, respectively (Fig 3G).

Protein complexes

Many proteins operate in complexes, for example, receptors
often detect ligands in complexes. To facilitate analyses taking
into consideration complexes, we added to OmniPath a compre-
hensive collection of 22,005 protein complexes described by 12
resources from 4,077 articles (Fig 3D). A complex is defined by
its combination of unique members. 14% of them were homo-
multimers, 54% had four or less unique components while 20%
of them had 18 or more. 71% of the complexes had stoichiome-
try information.

© 2021 The Authors
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Annotations: function, structure and localization

Annotations provide information about the function, structure,
localization, classification, and other properties of molecules. We
compiled the annotations database from 49 resources. The format of
the records from each of these resources is different. The simplest
ones only define a category of proteins, like Cell Surface Protein
Atlas (CSPA) (Bausch-Fluck et al, 2015) that collects the proteins
localized on the cell surface. More complex annotation records
express a combination of multiple attributes. For example, each of
the annotations from the Cancer Pathway Association Database
(CPAD) (L1 er al, 2020) contain seven attributes to describe a rela-
tionship between a protein or miRNA, a pathway, and their effect
on a specific cancer type (Fig EV3). The pathway and gene sets are
also part of the annotation database, as these are useful for func-
tional characterization of omics data and enrichment analysis.

Overall, the ans s database included 5,475,532 records
about 20,365 proteins, virtually the whole protein-coding genome,
19,566 complexes, and 182 miRNAs. The majority of the annota-
tions for complexes were the result of our in silico inference: If all
members of a complex share a certain annotation, we assign this
annotation to the complex itself.

The annorarions database can be used in different ways: Select-
Ing one resource, its data can be reconstituted inte a conventional
data frame with attributes as columns and annotations as rows.
Alternatively, specific sets of proteins can be querled, eg., “the
members of the Notch pathway according to SIGNOR® (Licata et al,
2020) or “the hypoxia upregulated genes according to MSigDB*
(Subramanian er al, 2005). The annotations are helpful in omics
data analysis; for example, they can be used for contextualization or
enrichment analysis.

Homology translation to rodents
OmniPath comprises human resources. We translated the network
and the enzyme-PTM relationships to mouse and rat by protein

£ 2021 The Authors

homology using NCBI HomoloGene, covering 81 and 31% of the
interactions for mouse and rat, respectively (Dataset EV9). In addi-
tion, pypath is able to translate to other organisms.

Close connection to the analysis of omics data

The OmniPath databases are built by the pypath Python module
and are distributed by the web service at https://omnipathdb.org/.
We provide web service clients in R, Python, and Cytoscape (Cec-
carelli et al, 2019). The clients not only query the OmniPath data
but also offer convenient post-processing methods and integration
with other software (Figs 1B and 4). The OmnipathR R client
impl a full gration with NicheNet, a method for prioritiz-
ing ligands affecting cells based on transcriptomics data (Browaeys
er al, 2019): A single OmnipathR function can be used to generate
all inter- and intracellular knowledge required for NicheNet. The
ommupath Python module, together with the single-cell data
processing scanpy module (Wolf er al, 2018) and the squidpy reim-
plementation of the CellPhoneDB algorithm to infer ligand-receptor
interactions between cell types (Efremova et al, 2020), provides an
easy and efficlent way to analyze intercellular communication.
These applications and further examples are available as detailed
tuterials at https://workflows.omnipathdb.org/. Here, a number of
guides are available demonstrating various features of OmniPath,
presenting the query parameters of the databases and showcasing
downstream workflows.

Case studies

OmniPath provides a single-access point to resources covering
diverse types of knowledge. Thus, it can be used as an input to
many analysis tools and is particularly useful for applications that
span over molecular processes typically considered separately
(Fig 4). To illustrate this, we used two examples where we extracted

Molecufar Systems Sclogy 17 e623| 201 7 of 16
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from OmniPath different types of intra- and intercellular knowledge
for computational analysis of bulk and single-cell RNA-Seq data.

Analysis of intra- and intercellular processes in
SARS-CoV-2-infected lung epithelial cancer cells

NicheNer is a recently developed method to prioritize ligand-target
relationships between interacting cells by combining their expres-
slon data with prior knowledge on interaction networks (Browaeys
et al, 2019). For this purpose, NicheNet explores the most consistent
inter- and intracellular protein interactions in accordance with a
given gene expression dataset. In the NicheNet publication, the
authors collected different types of interactions from more than 20
databases to build a ligand-receptor network, a signaling network,
and a gene regulatory network. Here, we bullt a network for analy-
sis with NicheNet using exclusively OmniPath.

We used the OmniPath built network to investigate the mecha-
nistic processes leading to the excessive inflammatory response and
dysregulated adaptive host immune defense that may occur in
severe COVID-19 cases (Catanzaro et al, 2020). We studied the auto-
crine regulatory effect of ligands secreted in SARS-CoV-2 infection of
epithelial lung cancer cells (Calu3; Methods and Appendix 2; data
from Blanco-Melo er al, 2020). Out of 117 ligands over-expressed in
SARS-CoV-2 infection, we selected for subsequent analysis the 12
best predictors of inflammatory response genes according to the
distribution of correlation values (Fig EV5B) and nichenetrr guideli-
nes (Methods and Appendix 2).

Among them, we found various cytokines: interleukins (IL23A and
ILIA), tumor necrosis factors (TNF and TNFSFI38), and chemokines
(CXCLS, CXCL9, and CXCL10), known to be involved in the inflamma-
tory response. NicheNet scores describing the potential influence of
the 12 selected ligands on the set of inflammatory genes are signifi-
cantly higher than on sets of randomly selected genes (average P~
value = 3.25¢-08 from Fisher's exact tests after 10 cross-validation

ds). Then, we explored the signaling events linking these ligands
to their target genes (Fig 5A, Methods and Appendix 2). We identified
several key proteins of the JAK-STAT pathuny (JAK2, STATI, STAT3,
and STAT4), a main regulator of the inflammatory response, that has
been suggested as a potential target to treat COVID-19 (Bagea & Avai,
2020). We also found ligands that potentially trigger the MAPK path-
way that has also been reported to be promoted by SARS-CoV-2 infec-
tion (Bouhaddou er al 2020, Trevedl er al, 2021). To further
characterize the potential medical relevance of these results, we inves-
tigated the drugs targeting the genes shown in Fig SA (Dataset EV14).
Among the most interesting results, we identified minocycline, an
antiblotic, and anti-inflammatory drug targeting CASP3 and TNF.
Minocycline has been very recently proposed to alleviate the effects of
SARS-CoV-2 severe infection In the central nervous system (Oliveira
et al, 2020) (see extended results in Appendix 2).

In summary, we found mechanistic insights about inflammatory-
related signaling cascades triggered by SARS-CoV-2 infection. The
underlying interactions spanned different curated (and thus
supported by literature) individual inter- and intracellular resources
that we could leverage as they are all integrated in OmniPath
(Fig 5A in Dataset EV13).

Alteration of intercellular communication in ulcerative colitis
As a second case study, we used single-cell RNA-Seq data (Smillie
et al, 2019) from ulcerative colitts (UC) to investigate paracrine
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signaling using OmniPath’s intra- and intercellular knowledge. UC
is an Inflammatory bowel disease (1BD) dnven by an interplay of
epithelial cells and resident mucosal immune cells. Hence, it would
be desirable to investigate it with considering both cell type-specific
intracellular signaling and cell-cell communication.

We limited our analysis to five cell types relevant in UC:
dendritic cell (DC), macrophage, regulatory T cell (Treg),
myofibroblast, and Goblet cell. We combined the cell type and
condition-specific expression data with OmniPath to build intracel-
lular and intercellular signaling networks (Appendix Fig $5). The
total number of cell-cell connections was similar (Table EV1), while
their identity and distribution were different between healthy and
UC conditions. In healthy condition, all cell types were tightly
connected to DCs while in UC to Treg cells (Fig 5B).

Using the intercell annotation database of OmniPath, we exam-
ined the type of intercellular interactions between these cell types.
We found that in both healthy state and UC the ligand-receptor and
adhesion connections were dominant and the cell junction type
connections were less abundant in UC—which was expected due to
the pathophysiology of the disease. Also in UC, we found a higher
amount of ligand-receptor and adhesion connections between Treg
cells and the other four cell types, supporting previously described
alteration of Treg signaling in UC (Yamada et al, 2016).

To analyze the changes in Treg signaling more in detail, we
combined the intercellular and intracellular databases from Omni-
Path and focused on the connection between myofibroblasts and
Treg cells. The total number of intercellular connections are nearly
the same in healthy and in UC conditions 472 and 478, respectively.
However, the actual interacting proteins and their downstream
effects are remarkably different (Fig 5C). This is mainly due to
ligands from myofibroblasts or receptors on Treg cells expressed
uniquely in one of the conditions. For example TGF-beta signaling is
a known regulatory input of Treg cells (Wan & Flavell, 2008), and
we found BMPRIA and ACVRLI1, two receptors for the TGF-beta
pathway, to be specific for healthy and UC conditions, respectively.
Although there is no evidence for the role of ACVRLI in Treg cells,
the knockout of Bmpria contributes to gut inflammation (Shroyer &
Wong, 2007). The changes in intercellular connections lead to major
downstream signaling difference in Treg cells. To map the down-
stream effect, we built an intracellular network of Treg cells includ-
ing two steps downstream of all recipient proteins targeted by
myofibroblast effectors (Fig 58). There were roughly two times
more affected downstream proteins in Treg cells in UC than in
healthy condition (835 versus 1,971), suggesting a wider regulatory
impact of myofibroblasts on Treg cells. Using Reactome (Jassal
er al, 2020) pathway enrichment analysis (Dataset EV11), we identi-
fied the main pathways in Treg cells affected differently by
myofibroblasts in the two conditions. In healthy state, the MAPK,
Toll-like receptor (TLR) 2/6, and TLR7/8 pathways were enriched
that are known as key processes regulating immunosuppressive
functions and suppressing the proinflammatory Th17 cells (Forward
er al, 2010, Nyirenda et al, 2015; He et al, 2018). Meanwhile in UC,
TLR4 and TLR3 pathways were affected by myofibroblasts, and
these pathways are relevant in UC as they regulate inflammatory
cytokine expression and decrease the abundance of Treg cells (Xiao
et al, 2009; Cao et al, 2014).

Our analysis supports the fact that the normally anti-inflammatory
effect of Treg cells in UC is deteriorated partially by myofibroblasts

© 2021 The Authors
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Table 2. Number of unique P and their first two neighbors in each pari:

Pathway Commons network OmniPath network

Ramilowski annotations OmniPath annotations
Conditions Unique receptors  First two neighbors  Unique receptors  First two neighbors  Unique receptors  First two neighbors
Healthy 2 receptors 7553 proteins 13 receptors 9371 proteins 36 receptors 2476 proteins
Uninflamed UC 2 receptors 10138 proteins 6 receptors 11441 proteins 41 receptors 2879 proteins

(Takahashi er al, 2006, West, 2019). We found key intercellular mech-
anisms leading to well-defined differential pathway activation profiles.
This was achieved via our novel approach to: (i) determine cell-cell
interactions both in a healthy and in disease states and (i) map
affected downstream intracellular signaling processes based on the
proteins interacting between cells.

Comparing Omnipath to other resources for cell-cell interaction
analysis

The UC use case provided an opportunity to compare OmniPath
against alternative sources of prior knowledge. We chose two
widely used resources, Pathuny Commons (PC) (Cerami et al, 2011)
for network and Ramilowsk: et al (Ramilowski er al, 2015) for
ligand-receptor annotations. Using the same workflow and expres-
sion data (Table 2), we investigated the myofibroblast-Treg cell
interaction in three different network-annotation combinations
(Appendix Fig $3): (1) PC-Ramilowsk:; (i) PC-OmniPath; and (i)
OmniPath-OmniPath (i.e., as we presented in the use case).

Using the undirected PC network with the Ramilowsk: and the
OmniPath annotation resulted in 523 and 3,136 ligand-receptor
connections, respectively. The OmniPath PPl network with Omni-
Path annotations revealed 4,473 ligand-receptor connections indi-
cating that this combination provides the largest coverage and more
detailed data with directionality. In the intracellular network of Treg
cells, using the Ramulowski annotation with PC network we found
around 20 times less condition-sp d with
using OmniPath for both network and annotation, leading to a
subsequent loss of downstream pathways in the former case. At the
same time, the PC network with OmniPath annotations provided a
large Treg cell downstream network containing - 50% of the PC
network, while using the OmniPath network resulted in a three
times smaller network, covering — 30% of the total OmniPath
network. This is mainly due to the fact that PC provides a denser
network than OmniPath, but undirected. Overall, OmniPath
provides a high number of ligand-receptor interactions and directed
Interactions for downstream intracellular pathway analysis, comple-
menting other meta-resources.

\fic receptors, comp

Discussion

In the first version of OmniPath (Tarel er al, 2016), we built a
comprehensive knowledge of intracellular signaling pathways with
the aim of providing prior knowledge for modeling methods. Here,
we present a major redesign and extension of this resource, offering
a single-access point to over 100 resources containing prior knowl-
edge of not only intra- but also intercellular processes. To achieve
this, we developed versatile annotations of intercellular communica-
tion roles, combined with a network covering intra- and intercellular
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signaling as well as gene regulation. By defining the rransmutter,
recetver, and mediator roles, we layed out a new conceptual frame-
work to describe intercellular communication and generalized the
terms of ligand and receptor (Dataset EV10). This framework allows
OmniPath to combine diverse resources in a uniform way. In Omni-
Path, the intercellular annotations and the network connections are
independent from each other, achieving together a great flexibility.
As intercellular communication becomes increasingly popular
thanks to single-cell technologies, we believe that supporting it with
database knowledge deserves a dedicated effort instead of doing ad
hoc data integration within each study.

While integrative resources such as STRING (Szklarczyk et al,
2019), PathwayCommons (Cerami et al, 2011), ConsensusPathDB
(Kamburov et al, 2013), PathMe, and ComPath (Domingo-Fernandez
er al, 2019) use mostly the major process description resources (e.g.,
Reactome (Jassal et al, 2020) and ACSN (Kuperstein et al, 2015)) and
resources with undirected interactions (e.g., IntAct (Orchard er al,
2014) and BioGRID (Oughtred et al, 2019)), the nerwork database of
OmniPath focuses on activity flow representation, providing a conve-
nient input for multiple analysis techniques (Touré er al, 2020);
Appendix 1). OmmPath s not limited to literature curated interac-
tions and it also includes activity flow, kinase-substrate, and ligand-
receptor interactions without references as separate datasets, so that
the users can decide which ones to use according to thelr purposes
(Dataset EV2). The rich annotations allow users to dive into specific
knowledge and extract information across resources. The knowledge
in OmmPath is general in terms of cell type or physiological condi-
tion. In the process of data analysis and modeling, omics data help to
make the database knowledge more context specific. As an alterna-
tive, one can use for example Human Protein Atlas (Uhlén et al,
2015) in the OmniPath annotations database to build tissue specific
networks (hitps://workflows.omnipathdb.org/).

As we demonstrated here, OmniPath s able to deliver the input
knowledge for different data analysis tools, such as CellPhonelB
(Efremova et al, 2020), NicheNet (Browaeys et al, 2019), CeliChat
(Jin er al, 2021), ICELLNET (Noél et al, 2021), NATM! (Hou et al,
2020), cellzcell (preprint: Armingol et al, 2020a), and CARNIVAL
(Liu et al, 2019) to infer communication between (Armingol et al,
2020b) and within cell types. For some of the analysis tools, we
provide dedicated software integration and workflows (https://
workflows.omnipathdb.org/).

As our case studies Hlustrate, OmniPath can replace the tedious
collection of information from many different databases. The first
case study pointed to potential signaling mechanisms of autocrine
origin In SARS-CoV-2 infection which can contribute to the dysregu-
lated inflammatory and immune response characteristic of severe
COVID cases. Our study is limited to the relationship of autocrine
signaling and inflammatory response and hence it does not cover the
complete process of viral infection. In the second study, we ilustrated

£ 2021 The Authors

186



Dénes Tirei et al

how conveniently OmniPath supports a combined analysis of inter-
and intracellular signaling from single-cell transcriptomics data. While
multiple studies mapped intracellular signaling pathways to intestinal
tissue, only a few of them were able to do it in a cell type-specific
manner using single-cell transcriptomics data (Smillie er al, 2019).
Due to the lack of integrated resources, combined intra- and intercel-
lular studies have been so far challenging and not standardized. This
Is currently a major bottleneck to understand better conditions such
as gut inflammation, which is modulated by the interplay of epithelial
cells and resident mucosal immune cells. The results of the case stud-
les can gusde designing co-culture experiments by prioritizing the
most relevant cell types and pointing out the key cell-cell interaction
types. For example, testing the role of CASP3 in the autocrine signal-
ing we pointed out in the first study, and the specific ligand-receptor
connections that altered the intestinal paracrine signaling in diseased
condition in the second case study. In general, the outcome of Omni-
Path-based analyses can define key candidates for more in depth
Investigations.

Over the past 4 years, we have kept developing OmniPath,
adding new features and resources regularly. One of our main
objectives for the future is to add more context information, e.g.,
cell type and physiological condition to the signaling network, and
use scores to prioritize interactions and paths which contribute
stronger to indirect causal relationships. Toward these aims, we
plan to leverage text mining methods (Gyorl et al, 2017; Kveler
et al, 2018). We are also working on benchmarking the intercellular
communication knowledge by deriving ground truth from experi-
mental data (Armingol er al, 2020b). Furthermore, we envision to
extend OmniPath with pathogen-host interactions (Trevell et al,
2021) and microbiome-host interactions (Andrighetti et al, 2020) in
the near future.

In summary, we provide a new integrated resource of blological
knowledge particularly valuable for network analysis and modeling
of bulk and single-cell omics data. We anticipate that this knowl-
edge will also be valuable to analyze the emergent spatially resolved
omics data (Asp et al, 2020). To understand tissue architecture and
function, it is crucial 1 swdy the spatial arrangement of the dif-
ferent cell types. Spaual transcriptomics technologies provide this
information and hence help to prioritize the most likely ligand-
receptor interactions. Fundamental questions about cell communi-
cation in tissues, such as how secreted ligands act on neighboring
cells, can be addressed by analyzing spatially resolved darta,
combining data-driven (Sun et al, 2020; preprint: Tanevski er al,
2020) with prior knowledge-based (Browaeys et al, 2019; Liu et al,
2019; Efremova et al, 2020) approaches. OmniPath provides a
framework to support these endeavors.

Materials and Methods
Terminology

In the manuscript, we use consistently the following three defi-
nitions to describe the structure of OmniPath:

* Database: collection of similar records in a uniform format inte-

grated from multiple resources (network, enzyme-PTM,
complexes, annotations, intercell).
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® Dataset: a subset or variant of a database, e.g., the transcriptional
interaction network is a dataset of the network database.
o Resource: any data source we use for building the databases.

Database build

To bulld OmniPath, we developed a free software, the pypath
Python module (https://github.com/saezlab/pypath, version
0.11.39). We built each segment of the database by the corre-
sponding submodules and classes in pypath. In addition to the
database building process, all modules rely on utility
modules from pypath such as the identifier translator or the down-
loading and caching service. Pypath downloads all data from the
original sources. Many resources integrate data from other
resources, we call these secondary resources and their relation-
ships are listed In Dataset EV7.

Network

For the OmniPath network, we converted the identifiers of the dif-
ferent molecules and merged their pairwise connections, preserving
the literature references, the information about the direction, and
effect sign (activation or inhibition).

In OmniPath, we included nine network datasets built from 61
resources (Dataset EV2). The first four datasets provide PPl
(“post_translational” in the web service) while the others transcrip-
tional and post-transcriptional regulation. At each point below, we
highlight the label of the dataset in the web service.

1 Wecompiled the "omnipath” network as described in Tirei et al
(Tarel et al, 2016). Briefly, we combined all resources we could
get access to, that are literature curated and are either activity
flow, enzyme-PTM, or undirected interaction resources. We also
added network databases with high-throughput data. Then, we
added further directions and effect signs from resources without
literature references.

2 The ‘kinaseextra” network contains additional kinase-
substrate interactions without literature references. The direc-
tion of these interactions points from the enzyme to the
substrate.

3 In the “pathwayextra® network, we combined further activity
flow resources without literature references. However, they are
manually curated and many have effect signs.

4 In the "ligrecextra® network, we provide additional ligand-
receptor interactions from large, comprehensive collections.

5  The "dorothea® network comes from DoRothEA database, a
comprehensive resource of transcription factor-gene promoter
Interactions from literature curated databases, high-throughput
experiments, binding motif and gene expression-based in silico
Inference, overall 18 resources(Garcla-Alonso et al, 2019). We
included the interactions from DoRothEA subclassified by con-
fidence levels from A to D, excluding the lowest confidence
level E. In OmniPath, users are able to filter the TF-target
Interactions by confidence level.

6  Transcriptional regulation (“tf_target”) directly from 6 litera-
ture curated resources. We show the size of the TF-target
network at different settings in Dataset EV8.

7 In the “post_transcriptional® network, we combined 5 litera-
ture curated miIRNA-mRNA interactions.
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8  Transcriptional regulation of miRNA (“ti_mirna”) from 2 liter-
ature curated resources.

9  IncRNA-mRNA interactions from 3 literature curated resources
("Incrna_mrna®).

Enzyme-PTM interactions

After translating the identifiers, we merged enzyme-PTM interac-
tions from 11 databases (Dataset EV3) based on the identity of the
enzyme, the substrate and the modified residue and its position. In
addition, we discarded the records where the residue could not be
found in any of the isoform sequences from UniProt (UniProt
Consortium, 2019). For each enzyme-PTM interaction, we included
the original sources and the literature references. We also kept the
records without literature support, e.g, from high-throughput
screenings or in silico prediction.

Complexes
‘We combined 12 databases to build a comprehensive set of protei

Dénes Turei et al

the complex if all components agreed in all attributes that we
considered relevant, e.g., if all members of a complex belong to the
WNT pathway then the complex is also annotated as a member of
the WNT pathway.

Intercellular signaling roles

From the resources used in annotarions, we selected 26 with func-
tion, location, or structure information relevant in intercellular
signaling. The relevant attributes we processed and combined to
account for main roles in intercellular communication (e.g., ligand,
receptor, ECM proteins) as well as the | al and topological
properties (e.g., secreted, transmembrane). In addition, we bullt
Boolean expressions from Gene Ontology terms to define the same
categories. Overall we created 25 functional and 10 locational cate-
gories (Dataset EV6). Each category carries the attributes described
in Dataset EV10 (Fig EV4). We manually checked the members of all
the annotation groups, relying on literature knowledge and UniProt
datash (UniProt Consortium, 2019), discarding the wrong anno-

complexes (Dataset EV4). Seven of these databases provide informa-
tion about the stoichi y of the compl while three contain
only the lists of ¢ We translated the names of the compo-
nents to UniProtKB n bers. We defined the compl

by their unique combination of members regardless of how the orig-
inal resource processed the underlying experimental data. We
merged the complexes based on their identical sets of components
and preserved the stoichiometry if available. We represent each
complex by the UniProt IDs of their components sorted alphabeti-
cally, separated by underscores and prefixed with "COMPLEX:".
From the original sources, we kept the literature references, the
human readable names (synonyms) and the PDB structure identi-
flers if available.

Annotations

Annotation resources provide diverse information about the local-
ization, function, or other characteristics of the molecules. We
obtained annotations from 49 databases (Dataset EVS). For these
databases, we translated IDs and extracted the fields with relevant
information. Due to the heterogeneous nature of the data, in the
annotation database, the content of the resources is not merged, but
rather all entries are provided independently.

Each annotation record assigns one or more attributes to a mole-
cule. One protein might have more than one annotation record from
the same database. For example, Vesiclepedia (Pathan et al, 2019)
provides two attributes: the vesicle type and the tissue where the
protein has been detected. We combined the annotation resources
into a uniform table where one column is the name of the attribute
and the other is the value. As one record might have multiple attri-
butes, the records are identfied by unique numbers (Fig EV3).
Providing the data in this format in our web service, it can be easily
reconstituted to conventional tables with standard tools like tidyr
(https://tidyr.tiidyverse.org) in R or pandas (https://pandas_pydata.
org) in Python.

Complex annotations

Only four resources curate annotations of protein complexes, from
these, we processed the complex annotations as we did for proteins.
Furthermore, we inferred annotations for complexes based on the
annotations of their components. We assigned the annotations to
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tations. We provide the classification of proteins and complexes by
these categories in the intercell query of the web service.

Identifier translation
For each type of molecule, we chose a reference database: for proteins
the UniProtKB ACs while for miRNAs the miRBase (Kozomara et al,
2019) mature Acs. From these databases, we obtained a reference set
of identifiers for each type of molecular entity and organism. We then
used translation tables provided by them to map other kinds of identi-
fiers to the reference set. For UniProt, we corrected for deprecated or
dary Acs by translating to primary gene symbol and then to
primary UniProt AC. We applied corrections to handle non-standard
notations (e.g., extra dashes, Greek letters). We also accounted for the
ambiguity in the mapping, Le., if one foreign identifier may corre-
spond to multiple reference identifiers we keep all target identifiers in
OmniPath.

Translation by homology to rodent species

The homology translation in pypath uses the NCBI HomoloGene
database (NCBI Resource Coordinators, 2018). Because HomoloGene
uses RefSeg IDs, the translation takes three steps: from UniProt to
RefSeq, then to the homologous RefSeg and finally from RefSeq to
UniProt. The success rate of this translation is around 80% for
mouse and roughly 30% for rat (Dataset EV9). We translated the
network data and the enzyme-PTM interactions from human to
mouse and rat, the two most popular mammalian model organisms.
In addition, we looked up PTMs in PhosphoSite (Hornbeck et al,
2015) which provides homelogy data for PTM sites. Then, we
checked the residues in the UniProt sequences (UniProt Consortium,
2019) and discarded the ones that did not match. The homology-
translated data are included also in the OmniPath web service.

Data download and caching

At the database build, we download all input data directly from the
original sources (Dataset EV1). Certain databases either temporarily
or ultimately went offline; we deposited their data in the OmniPath
Rescued Data Repository (https://r d ipathdb.org/). Pypath
contains the URLs for all resources used including the identifier
translation tables. It automatically downloads, extracts, and prepro-
cesses the data for each operation. Then, it stores the downloaded
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data in a local cache directory which belongs to the user account on
the computer. Once cache is created, pypath reads from it and
performs the download only if requested by the user.

Joint analysis of intra- and intercellular processes in SARS-CoV-2
infection

The NicheNet method (Browaeys et al, 2019) was bullt, trained, and
applied to a case study using interactions and annotations from
OmniPath resources. This information was downloaded via our R
package, OmmpathR.

Network construction

NicheNet generates a model based on prior knowledge to describe
potential regulatory effects of ligands on target genes. To reproduce
their procedure, we first built three networks accounting for protein
interactions of different categories retrieved from OmniPath:

1 Ligand-receptor network: We downloaded the “ligrecextra®
network which specifically contains known interactions
between ligands and receptors. In addition, we selected
proteins annotated as ligands or receptors as their main “inter-
cellular signaling role”. Then, we extended this network with
PPl whose source is a ligand and its target a receptor.

2 Signaling network: we retrieved PPl from the original Omni-
Path network (Tiurel er al, 2016), the “kinaseextra® network
and the *pathwayextra® network.

3 Gene regulatory network: We selected the most reliable TF-
target interactions from the DoRothEA dataset (confidence
levels A, B, and C) and the literature curated “tf_target” dataset
of the *transcriptional® network of OmniPath to be in line with

the curation level of the ligand-receptor and signaling networks.

Then, we computed ligand-target regulatory potential scores
based on the topology of our aforementioned networks, following
the protocels described in the NicheNet original study and using its
assoclated nichenetr package (Browaeys et al, 2019). Brieifly, Person-
alized PageRank was applied on the union of the ligand-receptor
and signaling networks considering every individual ligand as start-
ing node. To estimate the impact of every ligand in the expression
of target genes, a matrix containing the PageRank scores is mult-
plied by the weighted adjacency matrix of the gene regulatory
network.

Analysis of altered ligands and pathways
We applied our OmniPath-based version of NicheNer analysis on
RNA-Seq data of a human lung cell line, Calu3 (GSE147507) (Blanco-
Melo er al, 2020). In this study, differential expression analysis at the
gene level between controls and SARS-CoV-2-infected cells was carried
out using the DESeq2 package(Love er al, 2014). We selected over-
Xp & d P-value < 0.1 and Log2 foldchange > 1)
after SARS-CoV-2 infection for further analysis. Then, we executed
Gene Set Enrichment Analysis (GSEA) taking the Wald statstic and
the hallmark gene sets from MSigDB (Liberzon et al, 2011) as inputs
using the fgsea package (preprint: Korotkevich er al, 2016). Inflamma-
tory response appeared as one of the top enriched sets. We therefore
selected the leading edge genes of inflammatory response, i.e., genes
contributing the most to the ennichment of this particular set, as

d l ds fad
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potential targets of the over-expressed ligands. We chose the
inflammatory response genes, similarly to the onginal NicheNet study
investigating the epithelial-mesenchymal transition-related genes
(Browaeys et al, 2019), because these processes are likely to be regu-
lated by extrinsic signals.

Ligand activity analysis on the aforementioned samples was
conducted using the nichenetr package (Browaeys er al, 2019). We
then selected the shortest paths between receptors (the ones inter-
acting with the top predicted ligands) and transcription factors (the
ones regulating the expression of the inflammatory target genes).
These paths were exported to Cytoscape (Shannon et al, 2003) to
generate Fig 5A.

Intercellular communication in ulcerative colitis

Intercellular interactions from OmniPath

We downloaded intercellular interactions using the “import_inter-
cell_network()" method in OmmupathR and filtered for direct cell-
cell connections: We discarded extracellular matrix proteins, extra-
cellular matrix regulators, ligand regulators, receptor regulators, and
matrix adhesion regulators and kept only membrane-bound (trans-
membrane or peripheral site of the membrane) proteins on the
recelver side. This resulted in connections involving ligands, recep-
tors, junction, adhesion, lon channel, transporter, and cell surface
or secreted enzyme proteins.

Single-cell RNA-Seq data processing

We downloaded the raw scRNA-Seq data and processed it according
to Smillie et al (Smillie er al, 2019). 51 cell types have been charac-
terized by average gene expressions in healthy (n = 12) state and
non-inflamed UC (r = 18). A gene was considered expressed if its
log2 expression value was above the mean minus 2 standard devia-
tions of the expressed genes within the cell type.

Specific interactions between cell types

We examined all possible connections among the selected 5 cell
types. We considered interactions condition specific if they appeared
either only in healthy or in UC, i.e., at least one member was
expressed only in the given condition. We counted the unique PPls
between each cell pair in the two conditions separately (Fig 58). We
visualized the condition-specific connections from myofibroblasts to
T cells on circos plots using the circlize R package (Gu et al, 2014).
On these figures, we grouped similar ligands (e.g., CCR2 and CCRS5)
and merged the connections within groups. Then, we grouped the
receptors by pathways defined in Signalink (Fazekas er al, 2013) 1o
improve biological insight and visual clarity (Fig 5C).

Cell type-specific network of regulatory T cell and downstream
pathway analysis

To highlight the downstream effect connections from myofibroblasts
to regulatory T cells, we created a cell-specific signaling network
and we carried out a pathway enrichment analysis. We used the
OmniPath Cytoscape application (Ceccarelli et al, 2019) to combine
the gene expression data with the OmniPath network. We limited
the network to genes expressed In regulatory T cells. We selected
the receptors targeted by condition-specific ligand-receptor connec-
tions in regulatory T cells. Finally, we pruned the network to the
two steps neighborhood of the T cellspecific receptors. We
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performed a pathway enrichment analysis on the network described
above, using the online interface of the Reactome database with its
default settings (hypergeometric test, Benjamini-Hochberg FDR
correction, the human genome as the universe).

Comparing OmniPath to other resources for cell-cell

interaction analysis

For the protein interaction network, we downloaded Pathuny
Commons (Cerami et al, 2011), which is an integrated resource
containing undirected protein-protein connections from public path-
ways and interaction databases. Pathway Commons was downloaded
from the version https://www_pathwaycommons.org/archives/PC2/
vi2/PathwayCommons12.Allhgne.sif.gz. Ligand, receptor annota-
tions were derived from Ramilowski et al and were downloaded from
hutps://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/data/Pa
irsLigRec.txt. We run our pipeline for three different network-annota-
tion combinations: (i) Pathuay Commons network with Ramilowski
annotations; (ii) Pathway Commons network with OmniPath ligand,
receptor annotations; and (ili) OmniPath network with OmniPath
ligand, receptor annotations.

Data availability

OmmwPath s available via the Python package pypath (hups://
github_com/saezlab/pypath), the web resource (https://omnipathdb.
org), the R/Bioconductor package OmnipathR (https://saezlab.
github lo/OmnipathR), the omnipath Python client (hitps://github.c
om/saezlab/omnipath), and the OmniPath Cytoscape plug-in (Cecca-
relli er al 2019). In addition, pypath is able to export the network and
the enzyme-PTM databases in BEL (Bilogical Expression Language)
format (Hoyt et al, 2018b), as well as to generate input files for Cell-
PhoneDB. The BEL format databases are available in BEL Commons
(Hoyt et al, 2018a). Code is licensed open source (GPLv3 or MIT).
Pypath builds the OmniPath databases directly from the original
resources, hence it gives the highest flexibility for customization and
the richest APl for queries and manipulation among all access options.
Furthermore, it is possible to convert each database to a plain data
frame and export in a tabular format. Pypath also generates the web
resource's ¢ which is accessible for any HTTP client at hutps://

ipathdb.org. Information about the resources is available at
https://omnipathdb.org/info. OmnipathR and the OmniPath Cytos-
cape plug-in work from the web resource data with convenient post-
processing features. All data in OmniPath carry the licenses of the
onginal resources (Dataset EV12), for profit users can easily limit their
queries to fit the legal requirements. We maintain a directory of work-
flows and tutorials at hutps://workflows.omnipathdb.org/.

Apart from the figures presented in this paper, further regularly
updated statistics and visualizations are available at https://
insights.omnipathdb.org.

A Python and R package for preducing the figures and tables of
this paper is available at https://github.com/saezlab/omnipath_ana
lysis. The code to build and train the NicheNet method (Browaeys
et al, 2019) exclusively using OmniPath resources as well as to
reproduce the SARS-CoV-2 case study is freely available at https://
github.com/saezlab/NicheNet_Omnipath. The code for building the
cell type-specific inter- and intracellular networks is available at
hutps://github.com/koresmarosgroup/uc_intercell.
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1 | INTRODUCTION

The human gastrointestinal (GI) tract microbiota consisting of bacteria, viruses, archaea, and eukaryotic microbes, contributes
to intestinal homeostasis by communicating with various host cells in the intestinal mucosa. Structural, compositional, and

This is an open sccess article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any mediums, peovided the original

work is propesdy cired.

Abstract

The gastrointestinal (GI) tract harbours a complex microbial community, which con-
tributes to its homeostasis. A disrupted microbiome can cause Gl-related diseases,
including inflammatory bowel disease (IBD), therefore identifying host-microbe
interactions is crucial for better understanding gut health. Bacterial extracellular
vesicles (BEVs), released into the gut lumen, can cross the mucus layer and access
underlying immune cells. To study BEV-host interactions, we examined the influence
of BEVs generated by the gut commensal bacterium, Bacteroides thetaiotaomicron,
on host immune cells. Single-cell RNA sequencing data and host-microbe protein-
protein interaction networks were used to predict the effect of BEVs on dendritic
cells, macrophages and monocytes focusing on the Toll-like receptor (TLR) pathway.
We identified biological processes affected in each immune cell type and cell-type

specific processes including myeloid cell differentiation. TLR pathway analysis high-

llghudtlu:BEV targets differ among cells and between the same cells in healthy ver-
sus disease (ulcerative colitis) conditions. The in silico findings were validated in BEV-
monocyte co-cultures demonstrating the requirement for TLR4 and Toll-interleukin-
1 receptor domain-containing adaptor protein (TIRAP) in BEV-elicited NF-kB acti-
vation. This study demonstrates that both cell-type and health status influence BEV-
host communication. The results and the pipeline could facilitate BEV-based thera-
pies for the treatment of IBD.

KEYWORDS
extracellular vesicles, host-microbe interactions, single-cell data analysis, tall-like receptor pathway, ulcer-
ative colitis
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functional alterations of the microbiota (“dysbiosis”) are associated with various Gl-related diseases, including Crohn’s disease
(CD) and ulcerative colitis (UC), two major forms of inflammatory bowel disease (IBD) (Delday et al., 2019). Dysbiosis in IBD
is characterised by a reduction in bacterial diversity (UC) or altered composition (CD) that involves Bacteroides and Firmicutes
species (Kabeerdoss et al., 2015). Despite recent advances in our understanding of IBD pathogenesis, the complex interactions
between the dysbiotic gut microbiota and the host mucosa that result in aberrant immune activation and inflammation in the
gut, are yet to be defined in detail.

Bacteroides thetaiotaomicron (Bt) is a Gram-negative anacrobe that is a major constituent of the human caecal and colonic
microbiota (ScienceDirect Topics, 2021). The administration of Bt in murine models of IBD ameliorates inflammation (Chang
et al, 2020; Fabrega et al,, 2017) with the anti-inflammatory effects being at least in part mediated by its production of bacte-
rial extracellular vesicles (BEVs). BEVs are released by both commensal Gram-negative and Gram-positive bacteria and have
the potential to mediate cross-kingdom interactions with host cells via the delivery of their contents and cargo to affect host cell
physiology and function (Chang et al, 2020). BEV's produced by Gram-negative bacteria, such as Bt, are small, spherical bilayered
structures (20-400 nm) composed of phospholipids, lipopolysaccharides, peptidoglycan, outer membrane proteins, periplasmic
contents including proteins, and some inner membrane and cytoplasmic fractions (Chronopoulos & Kalluri, 2020; Schwech-
heimer & Kuchn, 2015). BEVs can permeate through the sterile mucus layer of the colon to access and transmigrate boundary
intestinal epithelial cells through different routes (Jones et al., 2020) enabling them to interact with underlying mucosal immune
cells (Cecil et al,, 2019; Durant et al., 2020; Hickey et al,, 2015; Kaparakis-Liaskos & Ferrero, 2015; Shen et al.,, 2012) and the
intestinal vasculature which facilitates their wider, systemic dissemination (Durant et al, 2020; Jones et al., 2020; Stentz et al,,
2018).

For Gram-negative bacteria, a defined pathway of interaction with the host immune system is via membrane-associated
molecules, including lipopolysaccharide (LPS) (Matsuura, 2013). Immune cells interact with LPS via their pattern recognition
molecules such as Toll-like receptors (TLRs). LPS consists of three main structural components of diverse functions: lipid anchor
(lipid A), core oligosaccharide region, and O-antigen. Lipid A is the most conserved part of LPS. The core region connects the
anchor and antigen units, the O-antigen is the immunogenic portion of LPS consisting of long polysaccharide chains (Arenas,
2012). The structure of LPS is diverse among bacterial taxa resulting in taxon-specific immune responses in the host. Bt contains
lipooligosaccharides (LOS) which are structurally distinct from the prototypical LPS of Escherichia coli (E. coli) (Jacobson et al.,
2018). For example, while lipid A is both hexa-acylated and diphosphorylated in E. coli, Bt has penta-acylated and monophos-
phorylated lipid A that does not promote proinflammatory responses in immune cells (Jacobson et al., 2018; Steimle et al., 2019).

Host cells acquire and degrade BEVs by several pathways including dynamin-dependent endocytosis, macropinocytosis, and
caveolin-mediated endocytosis (Jones et al,, 2020). BEVs and their protein cargo can trigger intracellular signalling cascades
in various immune cells such as dendritic cells (DCs). In the healthy gut, this interaction leads to the production of anti-
inflammatory cytokines (such as 1L-10), whereas in the inflamed gut of IBD patients, this anti-inflammatory response is lost
(Durant et al,, 2020). Another recent study showed that Bt BEV's enhance regulatory T cell and helper T cell 1 (Thl) responses,
while decreasing the activation of Th2 and Th17 cell (Li et al., 2021). These anti-inflammatory properties of BEV's have led to
their incorporation into probiotic-based therapeutics in murine models of IBD (Chang et al, 2020; Fabrega et al,, 2017). There
is a major need for such novel therapeutic strategies as despite the advent of biologic therapies in IBD, ~25% of patients with
UC and up to 75% with CD eventually require surgical intervention. One such strategy being explored is the ability to modulate
the host immune system through microbiota-based therapies (Zhang et al., 2017). Given the ability of Bt BEVs to influence host
immune cell signalling they may have untapped therapeutic potential.

However, the effects of Bt BEVs on different host immune cells are poorly understood. Single-cell transcriptomics (scRNAseq)
provides an opportunity to understand how Bt BEVs influence gut mucosal immune cell populations with cell-type specific
resolution. Of particular interest are monocytes, macrophages and DCs, which play key roles in initiating and determining the
outcome of local and systemic immune responses to non-harmful and harmful stimuli (Scott & Mann, 2020), and shaping the
immune response in IBD (Steinbach & Plevy, 2014).

Here, we have utilised single-cell RNAseq datasets in combination with Bt BEV proteomes to develop a computational work-
flow of the predicted effect of BEVs on immune cells at different stages of their development, in healthy and disease (UC) states.
In a proof-of-concept study, we experimentally confirm the predicted interaction of BEVs with human monocytes via TLR4.

2 | MATERIAL & METHODS

2.1 | Characterisation of Bt BEV proteins

The bacterium Bt VPI-5482 was grown anacrobically at 37°C with agitation using a magnetic stirrer in Brain Heart Infusion
(BHI) medium (Oxoid/Thermo Fisher, Basingstoke, UK) supplemented with 0.5 mg/L haemin. BHI (three independent cultures)

was inoculated with an overnight culture of Bt at an initial ODgy of 0.05. After 5 h of growth (OD approximately 3.0, early
stationary phase), the cells were centrifuged at 5500 g for 45 min at 4°C. The supernatants were filtered through polyethersulfone
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(PES) membranes (0.22 um pore-size) (Sartorius) to remove debris and cells. The sterility of the vesicle-containing filtrates was
confirmed by plating onto BHI-haemin agar. BEVs in the 500 ml filtrates were concentrated by crossflow ultrafiltration (100 kDa
MWCO, Vivaflow 50R, Sartorius) to 0.5 ml, diluted by addition of 500 ml of ice-cold phosphate buffered saline (PBS), pH 7.4, and
the suspensions were concentrated again by crossflow filtration to 0.5 ml and filter-sterilised through a 0.22 um PES membrane
(Sartorius). Following crossflow ultrafiltration, further purification of BEVs was performed by fractionation of the suspension
(Durant et al,, 2020) by size-exclusion chromatography using a CL2-B Sepharose (Sigma-Aldrich) (120 cm X 1 cm column) in
PBS buffer. The absorbance of the fractions was measured at 280 nm and the first fractions corresponding to the first absorbance
peak were pooled and concentrated to 1 ml with a Vivaspin 20 centrifugal concentrator (100 kDa molecular weight cut-off,
Sartorius) and filtered through a 0.22 um PES membrane (Sartorius). Vesicle concentration was determined by Nanoparticle
Tracking Analysis (NTA). The BEV suspension was centrifuged (150,000 g at 4°C or 2 h in a Ti70 rotor (Beckman Instruments)),
the supernatant removed using a vacuum pump and the vesicle pellets were snap frozen in liquid nitrogen and stored at -80°C
prior to extraction.

2.2 | Proteomic analysis

Samples for proteomics analysis consisted of 100 ug of BEV or cell protein extract prepared and labelled at the Bristol University
proteomics facility using TMT reagents (10-Plex format, Isobaric Mass Tagging kit, Thermo Scientific). Labelled samples were
pooled and then fractionated using High pH Reverse Phase Liquid Chromatography. The resulting fractions were subjected to
nano-LC MS/MS using an Orbitrap Fusion Tribrid mass spectrometer with an SPS-MS3 acquisition method. Fragmentation of
the isobaric tag released the low molecular mass reporter ions which were used to quantify the peptides. Protein quantitation was
based on the median values of multiple peptides identified from the same protein, resulting in highly accurate protein quantitation
between samples. The data sets were analysed using the Proteome Discoverer v2.1 software and run against the Bt VPI-5482 and
filtered with a 1% and 5% FDR cut-off.

2.3 | Transmission electron microscopy

Samples were visualized using negative staining with TEM. Briefly, 4 ul BEV suspension was adsorbed to plasma-pretreated
carbon-coated copper EM grids (EM Solutions) for 1 min before wicking off with filter paper and negatively staining with 1%
Uranyl Acetate solution (BDH 10288) for 1 min. Grids were air-dried before analysis using a FEI Talos F200C electron microscope
at 36,000x-92,000x magnification with a Gatan Oneview digital camera.

2.4 | Isolation and characterisation of Bt BEVs for the experimental validation

Bt (strain VPI-5482) was grown with agitation under anacrobic conditions at 37 °C in 50 ml (three replicates) of brain heart
infusion (BHI) broth medium (Oxoid/Thermo Fisher, Basingstoke, UK) supplemented with 0.5 mg/L haemin (Sigma-Aldrich, St
Louis, MO, USA) (BHI-haemin) at 37°C to early stationary phase (OD approximately 2.5). 20 ml of each culture was centrifuged
at 5,500 g for 20 min at 4°C and the supernatants vacuum-filtered through polyethersulfone (PES) membranes (0.22 um pore-
size) (Sartorius) to remove debris and cells. Supernatants were concentrated by ultrafiltration using Amicon ultra-15 centrifugal
filter units (100 kDa molecular weight cut-off), the retentate was rinsed twice with 15 ml of PBS (pH 7.4) and concentrated to
150 ul. To separate out BEVs from remaining proteins and lipids, qEVsingle/35 nm columns (Izon) were used to perform SEC
according to manufacturer instructions. Fractions containing BEV's were combined and the suspensions were stored at 4°C.
The size and concentration of the isolated BEV's was determined using a ZetaView PMX-220 TWIN instrument according to
manufacturer instructions (Particle Metrix GmbH). Aliquots of BEV's suspension were diluted 1000- to 20,000-fold in particle-
free PBS for analysis. Size distribution video data was acquired using the following settings: temperature: 25°C; frames: 60;
duration: 2 5; cycles: 2; positions: 11; camera sensitivity: 80 and shutter value: 100. The ZetaView NTA software (version 8.05.12)
was used with the following post acquisition settings: minimum brightness: 20; max area: 2000; min area: 5 and trace length: 30.

2.5 | Single-cell transcriptomic datasets analysis

A publicly available scRNAseq dataset describing gene expressions in 51 cell-types from the colon in three conditions (healthy,
non-inflamed UC, and inflamed UC) was analysed by using the average expression of genes (Smillie et al., 2019). From the 51
cell-type datasets, cycling monocytes, inflammatory monocytes, macrophages, DCI (healthy mucosa-related subset) and DC2
(inflammation-related subset) populations appearing in healthy and non-inflamed UC conditions were selected for further
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analysis. Raw data is available on the Single Cell Portal (https://singlecell broadinstitute.org/) under SCP259 study 1D. While
the original dataset contains inflamed samples, in order to avoid inflammation-related bias in cell communication we focused
our analysis on non-inflamed cells from the same UC patients.

Raw scRNAseq data was processed using scripts and parameters by Smillic et al (Smillie et al, 2019)
(http://www.github.com/cssmillie/ulcerative_colitis). To discard genes expressed at extremely low levels, we applied a z-
score test based on the method of Hart et al (Hart et al,, 2013). A gene was considered not to be expressed if its log2 expression
value was less than three standard deviations of the mean expressed genes in that cell.

2.6 | THP-1 monocyte transcriptomic analysis

‘Two publicly available bulk RNAseq datasets of the human monocytic cell line THP-1 were used for experimental validation. Raw
counts from GSE132408 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ace = GSE132408) and GSE157052 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?ace = GSE157052) datasets were normalized using the DESeq2 package in R. Due to the different
gene symbols and gene IDs in the datasets, we unified them to gene symbols using Uniprot and used only genes detected in both
experiments. We applied the same protocol as for the single cell RNA-seq datasets: first we log2 transformed the count number
and then we used a Z normalisation. We considered a gene expressed if its z-score was above -3 (mean -3 standard deviation).
We used these Z transformed values for the analysis.

2.7 | Constructing a host cell-BEV interactome

We predicted the effect of BEV proteins on different cell-types based on host-microbe protein-protein interaction (PPI) networks
using our MicrobioLink pipeline (Andrighetti etal,, 2020). The connections were based on experimentally verified domain-motif
interactions from the Eukaryotic Linear Motif (ELM) database (Kumar etal., 2020). It was assumed that a BEV protein containing
a domain can bind to a human protein having the corresponding interacting motif within its sequence. First, we downloaded
the sequence of BEV and human proteins from the Uniprot database (Consortium, 2019). Then Pfam domains of BEV proteins
were predicted by InterProScan and human motifs identified by the ELM database. To avoid large numbers of false-positive
PPIs, a quality filter was applied using [UPred tool (Mészaros et al., 2018) which uses scores based on two methods (IUPred and
ANCHOR?2) to measure residue-level energy terms. The energy terms correlate how intrinsically disordered the protein region is.
Higher disordered regions are more accessible for the bacterial domain. Two cut-off values (IUPred > 0.5 and ANCHOR2 > 0.4)
were set up to select human motifs which are presented out of globular domains and at an intrinsic disordered protein region
(Mészaros et al., 2018).

2.8 | Functional analysis of BEV target proteins

Functional analysis was performed using the Gene Ontology (GO) database. GO database orders the annotations in a tree-
like structure where parent and child categories are represented in a hierarchical way. GOrilla was used to highlight the enriched
biological processes of the BEV targets in different cell-types (Eden etal., 2009). Asabackground dataset, all expressed genes were
examined in cells facilitating the identification of cell-type specific functions. An annotation was significantly overrepresented
among the Bt targets if the P-value was less than 10 * and the FDR g-value calculated by Benjamini and Hochberg method was
less than 0.05. We used REVIGO to reduce the dimensionality of the annotations, thereby avoiding the overlapping processes
that belong to the same function and identify significant differences among functions (Supek et al., 2011). simRel scores were
applied to measure the GO semantic similarity. To visualise the functional overlap among cell-types, InteractiVenn was used
(Heberle et al., 2015). Although this analysis is suitable for depicting processes that are specific to a cell-type or condition due to
the large number of BEV interacting proteins in each cell-type, the output of this analysis focuses mainly on common processes.
A more fine-grained analysis can be achieved by involving gene expression values, and not only the presence or absence of a
gene's expression when establishing condition specific differences.

2.9 | Cell-type and condition specific TLR pathway modelling

Members of the TLR pathway were derived from the Reactome database due to its high and reliable coverage of associating
proteins to pathways. (Jassal et al,, 2020). The OmniPath database was used to collect the interactions due to slightly larger
coverage of interaction data compared to Reactome (Tirei et al,, 2016). Signalling in different cell-types was interpreted by
adding the expression values from scRNAseq datasets (monocytes, dendritic cells, macrophage) and bulk RNAseq (THP-1 cells).
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To compare the signal flow under different conditions (healthy and non-inflamed UC), expression values were added to the
genes/proteins. We created one network for each cell type to represent both conditions. We avoided using differentially expressed
genes because it focuses only on the differences at the gene level and not the pathway of the spreading signal. Therefore, the
healthy log2 gene expression was subtracted from the diseased expression value to indicate differences in signal flow in the TLR
pathway.

2.10 | TLR-signalling in THP1-Blue cells

THP1-Blue NF-xB reporter cell line (Invivogen) was derived from the human THP-1 monocytic cell line by stable integration
of an NF-xB-inducible secreted alkaline phosphatase (SEAP) reporter construct. THP1-Blue cells were cultivated in RPMI-1640
(Sigma-Aldrich) supplemented with 10% heat-inactivated FBS (Biosera), 1% Pen/Strep (Sigma-Aldrich) and 100 ug/ml Nor-
mocin (Invivogen) at 37°C and 5% CO; in a humidified incubator. To maintain selection pressure during cell subculturing,
10 pg/ml blasticidin (Invivogen) was added to the growth medium at every other passage. To identify TLR4 and TIRAP medi-
ated activation THP-1 cells were sceded in flat-bottomed 96-well plates at a density of 5 X 10° cells/ml and incubated with E.
coli derived LPS (10 ng/ml, Sigma-Aldrich) 1 h at 37°C. Control cultures were incubated with PBS. In some cases, cells were
pre-treated with the TLR4 inhibitor CLI-095 (2 ug/ml) (Invivogen) or peptide-based TIRAP inhibitor (50 ug/ml) (Merck) and
incubated for 1.5 h at 37°C and 5% CO, in a humidified incubator. For BEV-THP-1 co-culture cells were incubated for 24 h with
different concentrations of BEVs (3 x 10°, 3 X 10, and 3 x 107/ml) after which 20 ! of the cell suspension was added to flat-
bottomed 96-well plates, mixed with 180 ul of Quanti-Blue (Invivogen) colorimetric assay reagent and incubated for 1 h at 37°C.
Secreted alkaline phosphatase (SEAP) levels were quantified by absorbance reading at 620 nm. All incubations were performed in
triplicate.

2.11 | Statistical analysis

Data were subjected to one-way or two-way ANOVA followed by Bonferroni’s multiple comparison post hoc test using GraphPad
Prism 5 software. Statistically significant differences between two mean values were established by adjusted P-value < 0.05. Data
are presented as the mean + standard deviation.

2.12 | Data availability

Raw scRNAseq data was extracted from Smillie et al. (2019). Bulk transcriptomics for THP-1 cell line analysis can be found in
GEO [GSEI132408, GSE157052]. The workflow containing Python and R scripts, input files and results is accessible on GitHub
(https://github.com/korcsmarosgroup/BT_BEV _project/).

3 | RESULTS
3.1 | The BEV-Immune cell protein interactome

To analyse the effect of BEV proteins on human cell-type specific signalling pathways we developed a computational workflow to
process single-cell data, combine information from network resources, and incorporate bioinformatics prediction tools (Figure 1).

Using this workflow, we identified potential candidates from the protcome of BEV's obtained from a culture of Bt grown in the
complex medium BHI, which totalled 2068 proteins. The same proteins were identified in BEVs extracted from the caecum of
germ-free mice monocolonized with Bt (Stentz et al, 2020). TEM was used to determine the purity of BEV preparations (Figure
S1). For host cells, scRNAseq data identifying genes expressed in each of five immune cell-types was used (Figure 2). For the
purpose of developing the protein-protein interaction (PPI) network, we assumed that all of the expressed genes were translated
into functional proteins.

BEVs can interact with the host via cell surface receptors and after internalisation, with cytoplasmic receptors. We did not
therefore filter host proteins based on their cellular location. Despite the large number of BEV-human PPIs (Figure 2) the majority
of bacterial proteins were hubs indicating they can potentially interact with thousands of host proteins. In total, 48 BEV proteins
interact with the host immune cells (Table 1), the majority of which are hydrolases, proteases, and other catabolic enzymes
without a specific cleavage site. In terms of individual interactions, five BEV helicase proteins (BT_0831, BT 1154, BT 3303,
BT _3844 and BT _3938) were predicted to target the same host protein PAPDS, a non-canonical poly(A) polymerase whose
function is impaired in IBD (Boele et al., 2014; Rammelt et al., 2011).
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3.2 | Functional analysis

Cell-type specific BEV-host interactomes are complex due to the large number of proteins and interactions involved. Therefore,
a functional analysis based on the GO database was initially carried out to identify the biological processes affected by microbial
proteins in healthy (non-inflamed) and inflamed UC conditions. Most of the over-represented functions were overlapping among
the different cell-types. However, comparing the cells under different conditions enabled us to identify specific effects of BEV
proteins with the unique functions (Table 52 and 83, Figure $2-54).

In the healthy state 209 functions were shared among the five cell-types containing basic cellular functions, such as chro-
matin organisation and macromolecule synthesis. Most of the unique processes (59) were found in inflammatory monocytes and
were related to the endoplasmic reticulum (ER), apoptosis and myeloid cell differentiation. Counter to these results, in cycling
monocytes—in terms of unique functions (16)—cell cycle-related processes were uncovered. Interestingly, among BEV targets
in DCI cells (20) somatic diversification of immune receptors and B cell apoptosis were uniquely over-represented. In contrast,
negative regulation of myeloid leukocyte mediated immunity and cell differentiation were prominent in DC2 cells (11). Among
BEV-targeted human proteins, the signalling pathways of both the epidermal growth factor (EGF) receptor and the regulation of
transforming growth factor beta (TGF-beta) receptor were affected specifically in macrophages, based on 27 individual processes
(Figure 3a).

BEV targets in the non-inflamed UC state included 174 overlapping processes that play vital roles in cell function. Uniquely
over-represented functions were observed in inflammatory monocytes (30) that were similar in non-inflamed UC and healthy
conditions and included positive regulation of the endoplasmic-reticulum-associated protein degradation (ERAD) pathway and
intrinsic apoptotic signalling pathways. Among the 28 cycling monocyte-related annotations, similarly to the healthy condition,
the cell cycle associated proteins were overrepresented. Here, we also found the negative regulation of G1/S phase transition
overrepresented. Other targeted human proteins identified in this study are involved in the regulation of DNA repair and cyclin-
dependent protein kinase activity, positive regulation of protein ubiquitination, and signal transduction by p53 class mediator.
Whereas BEV proteins affected cell-cycle processes in DC2 (35), target proteins in DC1 (28) related to vesicle fusion, negative
regulation of apoptotic signalling pathways, and the intracellular steroid hormone receptor signalling pathway. Among the 22
unique processes in macrophages, regulation of RAS protein signal transduction, base-excision repair, and diverse histone mod-
ification steps were identified (Figure 3b).
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In both conditions, macromolecule metabolism, DNA-related processes, and RNA-related processes were affected in all five
cell-types by BEVs. Additionally, endoplasmic reticulum (ER)-stress response related processes and vesicle organisation and
transport were influenced by BEV's in most cell-types.

3.3 | Effect of BEV proteins on TLR pathway in dendritic cells, monocytes and macrophages in
healthy and UC conditions

As previous results established that Bt may alter immune pathways, we focused on the potential interactions between BEVs and
TLR pathways. To do this, we created cell-type and condition specific signalling networks for BEV's and TLR pathways based on
the scRNAseq data. These networks revealed that whilst the expression of TLR pathway-related transcription factors remained
the same in both healthy and non-inflamed UC conditions in all examined cell-types, the level of TLR receptor expression
was different amongst different immune cell-types. Due to the cell-type specific expression of different pathway members, BEV
proteins established diverse interactions with immune cells (Figure 4-7).

Analysis of TLR pathways demonstrated cell specificity, especially in monocytes and DCI cells, with differences occurring
mostly at the level of receptor proteins. The BEV-targeted genes/proteins which show cell or condition specific expression may
relate to the activation of different signalling pathways in healthy or UC. The network predictions also indicate that bacterial
proteins can have intracellularimmunomodulatory effects by binding to downstream elements of the TLR pathway (Figure 4-7).
The expression of genes encoding transcription factors (TFs) did not show divergence between healthy and diseased conditions.

Dendritic cell subsets (DC1-DC2) show diverse characteristics regarding expression of TLR pathway members with fewer
pathway members being expressed in DCls. Also, in DCI cells under healthy conditions, a large number of TLR pathway members
were expressed in a condition-specific manner, including TLR], 2, 3 and 7. In DC2 cells, three proteins were uniquely found in
healthy (TLR3, MAPK7, and PP2RI1B) and three in non-inflamed UC (TAB3, DNMI, and PELI3) conditions. In addition, more
TLR receptors (TLR1-8, TLR10) were represented in DC2 cells compared to DCI cells. However, a smaller number of differences
were detected in the expression of TLR pathway members in DC2 cells compared to DCI cells. While no receptor was targeted in
DC1, TLR4 was identified as a potential BEV target in DC2 cells (Figure 4). These results raise an interesting issue regarding the
DC subpopulation-specific LOS mediated activation via TLR2/4 mediated signalling: DCls are likely to not bind LOS in diseased
condition due to the lack of TLR4 expression and health-related TLR2 expression. In contrast, TLRZ and TLR4 expressed in
inflammation-related DC2 in both healthy and UC conditions, enabling LOS mediated activation in both health and discase
states.

In monocytes, the majority of TLR pathway members were expressed with signals being spread through diverse paths due to
a few key signalling proteins being represented only in the healthy or diseased network. In terms of cycling monocytes, TLRI, 2,
5,6, 7, 8 were expressed at equivalent levels in both conditions, with TLR4 expression strongly related to the diseased condition.

Amongst downstream signalling components, nine proteins were represented in the healthy state and two proteins in non-
inflamed UC with BEV proteins being able to bind most of them. In inflammatory monocytes several condition-specific pathways
were identified including TLR4 and TLRS in non-inflamed UC, and TLR7 and TLR10 pathways in the healthy state. The network
shows a high number of condition-specific proteins downstream (17 healthy and 12 UC specific proteins) (Figure 5). These results
show that BEV proteins bind one TLR receptor (TLR4) which is expressed in both cell-types but only in inflammation-related
monocytes in non-inflamed UC.

We analysed bulk RNAseq datasets to verify the role of BEVs on the TLR4 pathway in THP-1 monocytic cell line derived
from human leukaemia (Tsuchiya et al., 1980). Results showed a more similar network to the output of the cycling monocyte
scRNAseq data analysis. However, we found some differences in TLR pathways, revealing more potential for BEV-interacting
proteins (PELI2-3, IRAK2, DNMI, RPS6K2, MAPKII) (Figure 6).

Based on the pipeline, macrophages depict no significant alteration in UC compared to the healthy state. While 9/10 receptors
are potentially represented, TLR4 was the only candidate interacting with BEV proteins. MAPKI10-11 helped spread the signal in
healthy cells, while PELI2 was expressed only in discased macrophages (Figure 7).

3.4 | Inhibition of TLR4 and TIRAP signalling abrogates BEV-driven monocyte activation

Our pipeline identified TLR4 as the only receptor associated with BEVs in cycling monocytes, DCI and macrophage cells. We
therefore investigated the effects of BEVs on TLR4-mediated activation of monocytes in BEV-monocyte co-cultures. Serial dilu-
tions of Bt BEVs (3 X 10°-3 x 107/ml) were cultured with THPI monocytes expressing an NF-kB reporter gene (THPI-Blue).
These experiments were carried out in the presence or absence of the TLR4 inhibitor, CLI-095 (Ii et al., 2006; Kawamoto ct al.,
2008), which in pre-optimisation experiments using E. coli derived LPs was shown to selectively inhibit TLR4 mediated activa-
tion of NF-kB (data not shown). CLI-095 achieved significant levels of inhibition of BEV-mediated NF-kB activation with the
highest level of inhibition (~37%) scen at the lower dose of BEVs (3 % 107). By comparison, THPI-Blue cells exposed to CLI-095
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in the absence of BEVs showed no significant inhibition (P > 0.05) of NF-kB activation (Figure 8a). The inability to completely
inhibit BEV-induced THP-1 activation by CLI-095 suggests TLR4-independent effects and pathways of BEVs induced NF-kB-
activation. This potential is revealed in the TLR signalling network that identifies the BEV interacting downstream pathway

components.

To substantiate and confirm the BEV-TLR4 interaction in NF-kB activation, we repeated the BEV-THP-1 co-culture experi-
ments using an inhibitor of TIRAP, which is an intracellular adaptor protein and component of the TLR4 and TLR2 signalling
pathways. Pre-incubation of THPI-Blue cells with the TIRAP inhibitor prior to incubation with 3 X 10* BEVs/ml demonstrated
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of biological pathways at cell-type specific resolution, which we utilised here to develop a computational workflow to identify the
differential effects of BEV exposure on different populations of host immune cells.

Specifically, we examined proteins in BEVs generated by the major human commensal gut bacterium, Bt, which is a potential
therapeutic agent in IBD (Delday et al., 2019). Hence, it is important to understand which, and how, specific cell-types are affected
by Bt BEVs. Considering gene expression profiles are different not only among cells but also in the same cells under different
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conditions, the possible protein-protein interactions will vary between microbes and its host.
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FIGURE 8 Inhibitton of TLR4 and TIRAP signalling pathway abrogates THP!-Blue cells activation by Bt BEVs. NF-xB activation was assessed using
different doses of BEVs in 5 X 10° THP1-Blue cells/ml in the presence ar absence of the TLR4 inhibitor CLI-095 (a) or TIRAP inhibitor (b) and by measuring
absorbance at 620 nm after incubation with the colorimetric assay reagent Quants-Blue. LPS from E. coli was used as a positive control and PBS as a negative
control. Data are presented as mean = SD (n = 9). Significant differences were determined by using two-way ANOVA followed by Bonferrons’s multiple
comparison post hoc test. ** (P < 0.01), **** (P < 0.0001)

The computational pipeline combines single-cell transcriptomics with network biology approaches to reconstruct the inter-
actomes and model the effect of Bt BEVs on different immune cells. In particular, we used a publicly available human scR-
NAseq dataset to examine how Bt BEVs could potentially impact cycling monocytes, inflammatory monocytes, DCls, DC2s,
and macrophages in both the healthy, disease-free colon and the non-inflamed UC, diseased colon (Smillie et al, 2019). The
output of the workflow highlighted that Bt BEVs have a large number of interactions with these immune cells. The majority
of candidate interacting BEV proteins are catabolic enzymes with numerous non-specific connections with our workflow high-
lighting bacterial proteins carrying PDZ domains. PDZ domains can assemble signalling complexes recognising a C-terminal
motif on the interacting protein and can change non-specific PPIs to more specific interactions. The two main functions of PDZ
domains are related to protein location determination and signalling, including cell-cell communication (Harris & Lim, 2001; Lee
& Zheng, 2010). Beside catabolic and PDZ domain-containing BEV proteins, we identified microbial helicases targeting specif-
ically the human polymerase protein PAPDS. Binding of helicases to polymerase proteins is critical to initiate leading-strand
DNA synthesis (Zhang et al,, 2011). PAPDS is also a well-known negative regulator of miR-21. Among the targets of this miRNA
are genes involved in the immune responses and pathogenesis of autoimmune diseases, including IBD (Boele et al,, 2014; Wang
etal,, 2016).

Despite the large overlap of connections, we identified in five types of immune cells unique functions triggered by Bt BEVs
in the healthy and UC colon. For example, cell division is significantly enriched in cycling monocytes in the healthy state. In
healthy conditions, bone marrow-derived monocytes circulate in the blood and differentiate to macrophages in various tissues.
Therefore, the proliferation of monocytes is required to maintain a pool of tissue-specific monocytes and macrophages (Swirski
et al, 2014). We also inferred that in UC, DNA repair activity might be influenced by BEV proteins interacting with cycling
monocytes. Prior work has demonstrated that patients with UC have higher levels of mucosal oxidative DNA damage, even under
non-inflamed conditions, which increases with the duration and severity of disease (Aslan et al.,, 2011; Beltran et al,, 2010; D’inca
etal, 2004; Dincer etal,, 2007; Lih-Brody et al., 1996). This is a potential explanation for the higher incidence of colorectal cancer
in UC patients. Indeed, mice with chronic colitis that are deficient in a key DNA repair enzyme have increased susceptibility to
developing colorectal carcinoma in response to oxidative stress (Liao et al, 2008). Our findings suggest Bt BEV proteins may
play an important role in promoting DNA repair activity against oxidative DNA damage in cycling monocytes in patients with
ucC.

In inflammatory monocytes, BEV proteins upregulate apoptosis and the ERAD pathway in both healthy and UC states. Both
these cellular processes are critical components of the unfolded protein response (UPR), which is important for resolving ER
stress. Interestingly, our analysis also showed that BEVs influence ER-stress response related processes in most immune cell
types we studied. In UC, several risk variants affect genes involved in these pathways and together with environmental fac-
tors (such as intestinal microbial dysbiosis, metabolites and/or inflammatory cytokines), disrupt the UPR in intestinal epithe-
lial cells. The resultant unabated ER stress has been shown to precipitate intestinal inflammation. However, in monocytes and
macrophages higher levels of UPR transcripts have been found in DSS-colitic mice compared to control mice, suggesting that the
UPR may permit these cells to survive in the inflamed mucosal milicu of colitis (Jones et al., 2018). Thus, BEV proteins may help
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promote resolution of ER stress and maintain the survival of inflammatory monocytes, macrophages, and other immune cells
by upregulating key components of the UPR.

Dendiritic cells are key antigen presenting cells and play important roles in innate and adaptive immunity including responses
to microbial pathogens. Interactions between DCs and BEV's can direct inflammation in the gut (Durant et al,, 2020). The micro-
biome can promote the differentiation of immature DCs into diverse subpopulations therefore maintaining immune homeostasis
(Stagg, 2003).

We focused on the effects of BEVs on TLR pathways examining different activities and outcomes of the pathways. A prior
study in mice indicates that Bt is capable of binding TLR4 (Coats et al., 2016). Here we discovered that Bt BEVs interact with
TLR4 in a cell-type and condition specific manner. Of note, TLR4 expression is upregulated in the inflamed colonic mucosa of
UC patients at both mRNA and protein levels (Hug et al., 2018; Levin & Shibolet, 2008).

Our pipeline was used to investigate if Bt BEV proteins might trigger immune response not only extracellularly via surface
receptor interactions, but also by interacting with intracellular proteins. Based on our Bt BEV-human PPI network, a bacterial
carboxyl-terminal protease (BT_2239) is predicted to bind TLR4. There is however no evidence as to how this enzyme affects
TLR4 activation, although in chickens TLRIS can be triggered by microbial proteases (De Zoete et al,, 2011). The domain-motif
prediction approach of our pipeline provides more structural details about host-microbe interactions: BT _2239 interacts with
TLR4 by a PDZ domain which catch a short motif —between 833 and 839 amino acid positions — at the end of the host protein’s
intracellular TIR domain. This suggests a possible intracellular BEV-TLR4 interaction separate or in addition to the extracellular
LOS-TLR4 interactions. Evidence in support of this proposal was obtained using the TLR4 inhibitor CLI-095 which binds to and
inhibits interactions with the intracellular domains of TLR4 and abrogated BEV-mediated NF-kB activation of THP-1 monocytes.
Further confirmation of the nature of BEV-TLR4 interactions was obtained by blocking the TLR2/4 adaptor protein TIRAP that
similarly inhibited BEV-mediated NF-kB activation of THP-1 monocytes. Of note, in silico analysis revealed cell and condition
specific expression of TIRAP. It is expressed in both healthy and disease states in cycling monocytes, DC2s and macrophages.
Nevertheless, the adaptor protein does not appear to be expressed by inflammatory monocytes and only under healthy conditions
in DCls. PPI prediction revealed 19 BEV proteins which may interact with the TIRAP protein through diverse domain-motif
interactions. The differential expression and the high number of interacting bacterial proteins highlights a potentially important
role of TIRAP in BEV-related regulation of inflammation that could be explored further as a potential therapeutic target in 1BD.
The co-localization of Bt BEVs with various intracellular compartments and in particular, the nucleus, of intestinal epithelial
cells that have acquired BEVs (Jones et al., 2020) demonstrates the feasibility of Bt BEVs interactions with various cytoplasmic
constituents of host cells.

Whilst providing new and potentially important insights into BEV-host immune cell interactomes our pipeline is limited to
one available scRNAseq dataset that describes gene expression in healthy and non-inflamed UC colonic mucosal cells. Some
expressed genes could be missed with the 10X single-cell transcriptomics approach, and we also do not have corresponding
protein levels (or their activities) in the cells of interest. In inferring a microbe-host PPI network, we assumed that all genes were
translated to functional proteins regardless of post-transcriptional modifications that could affect protein abundance. Regarding
the PPI predictions for the microbe-host interactions we used a limited list of domain-motif interactions from the ELM database
and also only eukaryotic Pfam domains are represented in the analysis which means prokaryotic-specific domains (e.g., S41
proteases) are missing from the network analysis. Finally, our workflow cannot predict the activation or inhibitory effects of
BEV proteins, but only whether they act on a particular receptor and pathway. Further investigations are needed to establish the
binding mechanism and impact of for example, the BEV carboxy-peptidase on host TLR4 receptors. Despite these limitations,
our pipeline provides a deeper insight into the effect of BEV proteins on host immunity at the protein level and shows the
importance of condition and cell specificity. In addition to predicting the affected host processes supported by the literature our
computational pipeline also identified new targets for experimental validation.

5 | CONCLUSION

We have developed a computational pipeline that predicts both the cell and condition specific effects of Bt BEV proteins on
key host immune cell populations. Focusing on the inflammation-related TLR pathway, which plays a role in IBD pathogene-
sis, our workflow highlighted the importance of single-cell based analysis identifying differences in TLR4 receptor expression
in diverse DC subpopulations. The current pipeline offers potentially interesting connection points and detailed mechanistic
insight — using structural information about proteins — into the relationship between Bt and host immune cells that will aid in
understanding how BEV's and their protein cargo may be of therapeutic value in IBD.
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