Ghotekar, Sudarshan B., Kinge, Ashish, Ballewar, Ajay, Belvekar, Amit and Bhalerao, Yogesh ORCID: https://orcid.org/0000-0002-0743-8633 (2022) Design Optimization of Splitter, Venturi Valve, and Charlotte Valve Using CFD. In: Recent Advances in Fluid Dynamics - Select Proceedings of ICAFFTS 2021. Lecture Notes in Mechanical Engineering . Springer, pp. 249-257. ISBN 978-981-19-3378-3
Preview |
PDF (Design Optimization of Splitter Sudarshan)
- Accepted Version
Download (337kB) | Preview |
Abstract
Ventilator valves are external attachments that supply oxygen at predetermined concentrations to patients suffering from COVID-19 or acute respiratory distress. Single-use valve sets can be printed using three-dimensional printing technology via a filament extrusion system or a polymer laser powder bed fusion process, and 3D printers can design the different elements of the valve using biomaterials like polyamide and polysulfone, polycarbonate, silicone rubber, and stainless steel. These disposable valves also eliminate the need for time-consuming sterilization. This paper discusses CFD simulations and design improvements in Venturi, splitter, and Charlotte valves based on basic flow quality factors.
Item Type: | Book Section |
---|---|
Uncontrolled Keywords: | cfd,covid-19,charlotte valve,splitter,venturi valve,automotive engineering,aerospace engineering,mechanical engineering,fluid flow and transfer processes ,/dk/atira/pure/subjectarea/asjc/2200/2203 |
Faculty \ School: | Faculty of Science > School of Engineering (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Materials, Manufacturing & Process Modelling |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 11 Oct 2022 09:30 |
Last Modified: | 22 Jan 2025 00:35 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/88939 |
DOI: | 10.1007/978-981-19-3379-0_22 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |