Peel resistance characterization of localized polymer film bonding via thin film adhesive thermally activated by scanned CO2 laser

Dowding, Colin, Dowding, Robert, Griffiths, Jonathan and Lawrence, Jonathan (2013) Peel resistance characterization of localized polymer film bonding via thin film adhesive thermally activated by scanned CO2 laser. Optics and Laser Technology, 48. pp. 358-365. ISSN 0030-3992

Full text not available from this repository. (Request a copy)

Abstract

Thermal laser polymer bonding is a non-contact process for the joining of polymer laminates using thermally activated adhesives. Conventional, contact based bonding techniques suffer from mechanical wear, geometric inflexibility and poor energy efficiency. The application of lasers offers the potential for highly localized delivery of energy and increased process flexibility whilst achieving controlled and repeatable bonding of polymer laminates in a contact free process. Unlike previously reported techniques, here it is reported that laser based non-contact bonding is both viable and highly desirable due to the increased levels of control it affords the user. In this work, laser polymer bonding of 75 μm thick linear low density polyethylene (LLDPE) film backed with a thermally activated adhesive to a 640 μm thick polypropylene (PP) substrate was conducted using continuous wave 10.6 μm laser radiation and scanning galvanometric optics. The effect of laser power and scanning traverse speed on the peel resistance properties of the bonded polymer laminates is presented, with a threshold specific energy density for successful adhesive activation determined.

Item Type: Article
Uncontrolled Keywords: sdg 7 - affordable and clean energy ,/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy
Faculty \ School: Faculty of Science > School of Engineering
Depositing User: LivePure Connector
Date Deposited: 09 Feb 2022 09:30
Last Modified: 21 Apr 2023 01:22
URI: https://ueaeprints.uea.ac.uk/id/eprint/83366
DOI: 10.1016/j.optlastec.2012.11.009

Actions (login required)

View Item View Item