Griffiths, Jonathan, Riley, Mike, Kirk, Antony, Borman, Alexander, Lawrence, Jonathan and Dowding, Colin (2014) Lean burn limit and time to light characteristics of laser ignition in gas turbines. Optics and Lasers in Engineering, 55. pp. 262-266. ISSN 0143-8166
Full text not available from this repository.Abstract
This work details a study of laser ignition in a low pressure combustion test rig, representative of an industrial gas turbine (SGT-400, Siemens Industrial Turbomachinery Ltd.) and for the first time investigates the effect of air mass flow rate on combustion characteristics at air/fuel ratios at the lean burn limit. Both the lean burn limit and time taken to light are essential in determining the suitability of a specified air/fuel ratio, especially in multi-chamber ignition applications. Through extension of the lean burn limit and reduction of the time taken to light, the operating window for ignition with regards to the air/fuel ratio can be increased, leading to greater reliability and repeatability of ignition. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using both a standard high energy igniter and a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 1064 nm wavelength. A detailed comparison of the lean burn limit and time taken to light for standard ignition and laser ignition is presented.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Engineering (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Sustainable Energy Faculty of Science > Research Groups > Materials, Manufacturing & Process Modelling |
Depositing User: | LivePure Connector |
Date Deposited: | 09 Feb 2022 09:30 |
Last Modified: | 07 Nov 2024 12:44 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/83364 |
DOI: | 10.1016/j.optlaseng.2013.11.016 |
Actions (login required)
View Item |