Scotland’s onshore wind energy generation, impact on natural capital & satisfying no-nuclear energy policy

Shepherd, A., Roberts, S., Sünnenberg, G., Lovett, A. ORCID: https://orcid.org/0000-0003-0554-9273 and Hastings, A. F. S. (2021) Scotland’s onshore wind energy generation, impact on natural capital & satisfying no-nuclear energy policy. Energy Reports, 7. pp. 7106-7117. ISSN 2352-4847

[thumbnail of Published_Version]
Preview
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Onshore wind electricity generation is key to mitigating greenhouse gas emissions.​ Poorly sited wind farms degrade high carbon soils and habitats, diminishing overall emission reductions. We explore the viability of the Scottish Government’s renewable energy plan with respect to land use, natural capital and low carbon storage. With avoidance of sensitive peatlands a main consideration, six constraining factors were combined to determine areas of least habitat and soil sensitivity to onshore wind development in Scotland. Currently, 14 out of 21 terrestrial habitats have been impacted by installation of 389 onshore wind sites. Accounting for 73% of the total area, Coniferous Woodland, Acid Grassland, Bog, and Heather Grassland have been the largest habitats impacted. The most common soils of the least sensitive areas available for installation are brown earth and podzols, and construction of new wind farms on environmentally sensitive areas can be minimised by targeting relatively disturbed habitats such as improved grasslands. Scotland has a potential of 2.75 Mha of relatively low sensitive land, the largest areas sited in the Highlands, Dumfries and Galloway and Aberdeenshire. Additional to current installed capacity (13.9 GW), Scotland would require 6.6 GW of installed onshore wind capacity to function without nuclear energy generation and 464 GWh additional storage capacity (provided by 8.2 GW wind capacity). This equates to an installed and additional total of 346.676 ha required for wind electricity generation, potentially satisfied by shared land use with 23% of Scottish improved grasslands. Scotland has the available land area to achieve the Scottish Government’s policy to move towards carbon-neutral, nuclear-free electricity generation through the use of renewables alone. Questions remain on which source of low carbon dispatchable (immediately accessible) energy to use in the case of a several day wind lull.

Item Type: Article
Uncontrolled Keywords: sdg 7 - affordable and clean energy,sdg 15 - life on land ,/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy
Faculty \ School: Faculty of Science > School of Environmental Sciences
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Centres > Business and Local Government Data Research Centre (former - to 2023)
Faculty of Science > Research Groups > Environmental Social Sciences
Faculty of Science > Research Centres > Centre for Social and Economic Research on the Global Environment (CSERGE)
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 20 Jan 2022 13:30
Last Modified: 27 Oct 2022 00:15
URI: https://ueaeprints.uea.ac.uk/id/eprint/83084
DOI: 10.1016/j.egyr.2021.10.063

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item