An introduction to thermodynamic integration and application to dynamic causal models

Aponte, Eduardo A., Yao, Yu, Raman, Sudhir, Frässle, Stefan, Heinzle, Jakob, Penny, Will D. ORCID: https://orcid.org/0000-0001-9064-1191 and Stephan, Klaas E. (2022) An introduction to thermodynamic integration and application to dynamic causal models. Cognitive Neurodynamics, 16. 1–15. ISSN 1871-4080

[thumbnail of Published_Version]
Preview
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

In generative modeling of neuroimaging data, such as dynamic causal modeling (DCM), one typically considers several alternative models, either to determine the most plausible explanation for observed data (Bayesian model selection) or to account for model uncertainty (Bayesian model averaging). Both procedures rest on estimates of the model evidence, a principled trade-off between model accuracy and complexity. In the context of DCM, the log evidence is usually approximated using variational Bayes. Although this approach is highly efficient, it makes distributional assumptions and is vulnerable to local extrema. This paper introduces the use of thermodynamic integration (TI) for Bayesian model selection and averaging in the context of DCM. TI is based on Markov chain Monte Carlo sampling which is asymptotically exact but orders of magnitude slower than variational Bayes. In this paper, we explain the theoretical foundations of TI, covering key concepts such as the free energy and its origins in statistical physics. Our aim is to convey an in-depth understanding of the method starting from its historical origin in statistical physics. In addition, we demonstrate the practical application of TI via a series of examples which serve to guide the user in applying this method. Furthermore, these examples demonstrate that, given an efficient implementation and hardware capable of parallel processing, the challenge of high computational demand can be overcome successfully. The TI implementation presented in this paper is freely available as part of the open source software TAPAS.

Item Type: Article
Uncontrolled Keywords: dcm,free energy,model comparison,model evidence,population mcmc,fmri,cognitive neuroscience,3*,uoa4 ,/dk/atira/pure/subjectarea/asjc/2800/2805
Faculty \ School: Faculty of Social Sciences > School of Psychology
UEA Research Groups: Faculty of Social Sciences > Research Centres > Centre for Behavioural and Experimental Social Sciences
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 07 Aug 2021 00:12
Last Modified: 11 Nov 2024 00:56
URI: https://ueaeprints.uea.ac.uk/id/eprint/81016
DOI: 10.1007/s11571-021-09696-9

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item