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Abstract
In generative modeling of neuroimaging data, such as dynamic causal modeling (DCM), one typically considers several

alternative models, either to determine the most plausible explanation for observed data (Bayesian model selection) or to

account for model uncertainty (Bayesian model averaging). Both procedures rest on estimates of the model evidence, a

principled trade-off between model accuracy and complexity. In the context of DCM, the log evidence is usually

approximated using variational Bayes. Although this approach is highly efficient, it makes distributional assumptions and is

vulnerable to local extrema. This paper introduces the use of thermodynamic integration (TI) for Bayesian model selection

and averaging in the context of DCM. TI is based on Markov chain Monte Carlo sampling which is asymptotically exact

but orders of magnitude slower than variational Bayes. In this paper, we explain the theoretical foundations of TI, covering

key concepts such as the free energy and its origins in statistical physics. Our aim is to convey an in-depth understanding of

the method starting from its historical origin in statistical physics. In addition, we demonstrate the practical application of

TI via a series of examples which serve to guide the user in applying this method. Furthermore, these examples

demonstrate that, given an efficient implementation and hardware capable of parallel processing, the challenge of high

computational demand can be overcome successfully. The TI implementation presented in this paper is freely available as

part of the open source software TAPAS.
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Author summary

When fitting computational models to data in the setting of

Bayesian inference, a user has the choice between two

broad classes of algorithms: variational inference and

Monte Carlo simulation. While both methods have

advantages and drawbacks, variational inference has

become standard in the domain of modelling directed brain

connectivity due to its computational efficiency, especially

when the challenge is to select between competing

hypotheses that explain the observed data. By contrast, the

high computational demand by Monte Carlo methods has

so far prevented their widespread use for inference on brain

connectivity, despite their capability to overcome some of

the shortcomings of variational inference. In this paper, we

introduce the user to thermodynamic integration (TI), a

Monte Carlo method designed for model fitting and model

selection. By covering its foundations and historical origins

in statistical physics, we hope to convey an in-depth

understanding of TI that goes beyond a purely technical

treatment. In addition, we also provide examples for con-

crete applications, demonstrating that, given an efficient

implementation and up-to-date hardware, the challenge of

high computational demand can be overcome successfully.
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Introduction

Dynamic causal models (DCMs) are generative models

that serve to infer latent neurophysiological processes and

circuit properties—e.g., the effective connectivity between

neuronal populations—from neuroimaging measurements

such as functional magnetic resonance imaging (fMRI) or

magneto-/electroencephalography (M/EEG) data (David

et al. 2006; Friston et al. 2003). As reviewed by Daunizeau

et al. (2011), DCMs consist of two hierarchically related

layers: a set of state equations describing neuronal popu-

lation activity, and an observation model which links

neurophysiological states to observed signals and accounts

for measurement noise. Equipped with a prior distribution

over model parameters, a DCM specifies a full generative

forward model that can be inverted using Bayesian

techniques.

In addition to inference on model parameters, an

important scientific problem is the comparison of com-

peting hypotheses, for example, different network topolo-

gies, which are formalized as different models. Under the

Bayesian framework, model comparison is based on the

evidence or marginal likelihood of a model. The model

evidence corresponds to the denominator from Bayes’

theorem and represents the probability of the observed data

under a given model. It is a widely used score of model

quality that quantifies the trade-off between model fit and

complexity (Bishop 2006; MacKay 2004).

Unfortunately, in most instances, it is not feasible to

derive an analytical expression of the model evidence due

to the intractable integrals that arise from the marginal-

ization of the model parameters. While various asymptot-

ical approximations exist, such as the Bayesian Information

Criterion (BIC, Schwarz 1978) and more recently the

Widely Applicable Bayesian Information Criterion (WBIC,

Watanabe 2013), variational Bayes under the Laplace

approximation (VBL, Friston et al. 2007) has established

itself as the method of choice for DCM, partially because

of its computational efficiency. Within the framework of

variational Bayes (VB), a lower bound approximation of

the log model evidence (LME) is obtained as a byproduct

of model inversion: the variational negative free energy

(which we refer to as �FVB throughout this paper).

While highly efficient, model comparison based on the

variational free energy has several potential pitfalls. For

example, under the Laplace approximation as used in the

context of DCM, there is no guarantee that �FVB still

represents a lower bound of the LME (Wipf and Nagarajan

2009). Furthermore, VB is commonly performed in com-

bination with a mean field approximation, and the effect of

this approximation on the posterior estimates can be diffi-

cult to predict (Daunizeau et al. 2011). Finally, in non-

linear models, the posterior could become a multimodal

density, a condition that aggravates the application of

gradient ascent methods regularly used in combination

with the Laplace approximation.

For these reasons, Markov Chain Monte Carlo (MCMC)

sampling has been explored as an alternative inference

technique for DCM (Aponte et al. 2016; Chumbley et al.

2007; Penny and Sengupta 2016; Sengupta et al.

2015, 2016; Yao and Stephan 2020). MCMC is particularly

attractive for variants of DCMs in which Gaussian

assumptions might be less adequate, such as nonlinear

DCMs for fMRI (Stephan et al. 2008), DCMs of electro-

physiological data (Moran et al. 2013), or DCMs for lay-

ered fMRI signals (Heinzle et al. 2016). MCMC is also

useful when extending DCM to more complex hierarchical

models (Raman et al. 2016), in which the derivation of

update equations for VB becomes difficult (but see Yao

et al. 2018). MCMC is asymptotically exact and only

assumes that the posterior distribution can be evaluated up

to a multiplicative constant. However, in practice, its

computational cost often leads to prohibitively long com-

putation times for the datasets and models commonly

encountered in neuroimaging. Furthermore, in contrast to

VB, MCMC does not provide an estimate of the model

evidence by default.

While several MCMC-based strategies for computing

the LME in neuroimaging applications have been explored

(e.g., Aponte et al. 2016; Penny and Sengupta 2016;

Raman et al. 2016), one particularly powerful and theo-

retically attractive MCMC variant is thermodynamic inte-

gration (TI). This method, like VB, rests on the concept of

free energy and has been proposed as gold standard for

LME estimation (Calderhead and Girolami 2009; Lartillot

and Philippe 2006). Despite strong theoretical advantages,

so far, the computational costs of TI have prevented its

practical use in neuroimaging.

This paper introduces the reader to thermodynamic

integration (TI) and its application to DCM. In contrast to

existing tutorials on TI (Annis et al. 2019), we provide an

in-depth discussion of the theoretical foundations of TI and

relate the tutorial specifically to DCM as a generative

model that is frequently used in contemporary neu-

roimaging analyses. Our discussion covers the key concept

of free energy starting from its historical origin in statistical

physics, with the aim of conveying a deeper understanding

of this method that goes beyond a purely technical treat-

ment. In the second part, we present a series of examples

involving both synthetic and real-world datasets. These

include (1) a validation dataset based on a linear regression

model with analytically tractable LME used to verify the

accuracy of TI, (2) a synthetic fMRI dataset where the true

data-generating model is known for each observation, and
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(3) a real-world fMRI dataset used to demonstrate LME

estimation for nonlinear DCM.

In addition to showcasing the application of TI, these

examples also serve to demonstrate that, given an efficient

implementation and hardware capable of parallel process-

ing, the challenge of high computational demand of TI can

be overcome successfully. The software implementation of

TI and DCM used in this paper is available as part of the

open-source toolbox TAPAS (Translational Neuromodel-

ing Unit 2014).

To keep this paper short and yet accessible to a broad

audience, summaries of key topics such as DCM, Bayesian

model selection (BMS), or Markov chain Monte Carlo

(MCMC) are offered in the supplementary material (see

sections S1, S2 and S3).

Thermodynamic integration and the origin
of free energy

This section introduces TI from a statistical physics per-

spective. Statistical physics is a branch of physics that uses

methods from probability theory and statistics to charac-

terize the behavior of physical systems. One of the key

concepts in statistical physics is that the probability of a

particle being in a given state follows a probability density,

and that all physically relevant quantities can be derived

once this distribution is known. Starting from the free

energy, we show how key concepts from information the-

ory have developed from their counterparts in statistical

physics, motivating the use of TI and providing a link to

the variational Bayes approach conventionally used in

DCM to approximate the log model evidence (LME).

Free energy: a perspective from statistical
physics

In thermodynamics, the analogue of the model evidence is

the so-called partition function Z of a system that consists

of an ensemble of particles in thermal equilibrium. A

classical discussion of the relationships presented here can

be found in Jaynes (1957) and a more modern perspective

in Ortega and Braun (2013). For example, let us consider

an ideal monoatomic gas, in which the kinetic energy

/ hð Þ ¼ mh2

2
ð1Þ

of individual particles is a function of their velocity h and

mass m. If the system is large enough, the velocity of a

single particle can be treated as a continuous random

variable. The internal energy U of this ideal gas is pro-

portional to the expected energy per particle. It is computed

as the weighted sum of the energies / hð Þ associated with

all possible velocities, where the weights are given by the

probability q hð Þ of the particle being at a certain velocity:

Udef
=

R
q hð Þ/ hð Þdh: ð2Þ

A second important quantity in statistical physics is the

differential entropy H of q:

H q½ �def= � kB
R
q hð Þ ln q hð Þdh: ð3Þ

Here, kB is the Boltzmann constant with units of energy

per degree temperature. For an isolated system (i.e., no

exchange of matter or energy with the environment), the

second law of thermodynamics states that its entropy can

only increase or stay constant. Thus, the system is at

equilibrium when the associated entropy is maximized,

subject to the constraint that the system’s internal energy is

constant and equal to U, and that q is a proper density, i.e.:

q hð Þ� 0 and
R
q hð Þdh ¼ 1:

This constrained maximization problem can be solved

using Lagrange multipliers (for the derivation see the

supplementary material S4), yielding the following

distribution:

q hð Þ ¼ 1

Z
exp �/ hð Þ

kBT

� �

; ð4Þ

where Z is referred to as the partition function of the

system:

Zdef=
R
exp �/ hð Þ

kBT

� �

dh: ð5Þ

In a closed system, the Helmholtz free energy FH is

defined as the difference between the internal energy U of

the system and its entropy H times the temperature T :

FH
def
= U � TH: ð6Þ

The Helmholtz free energy corresponds to the work (i.e.,

non-thermal energy in joules that is passed from the system

to its environment) that can be attained from a closed

system. From Eq. 6, we see that the system with constant

internal energy U is at equilibrium (i.e., maximum entropy)

when the Helmholtz free energy is minimal. Substituting

the internal energy (Eq. 2), the entropy (Eq. 3) and the

expression of q (Eq. 4) into Eq. 6, it follows that the log of

the partition function corresponds to the negative Helm-

holtz free energy divided by kBT :

� FH

kBT
¼ lnZ: ð7Þ

Free energy: a perspective from statistics

In order to link perspectives on free energy from statistical

physics and (Bayesian) statistics, we assume that the
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system is examined at a constant temperature T such that

the term kBT equals unity (normalization of temperature),

allowing us to move from a physical perspective on free

energy (expressed in joules) to a statistical formulation

(expressed in information units proportional to bits). This is

the common convention in the statistical literature, and

thereby, all quantities become unit-less information theo-

retic terms. Under this convention, the physical concept of

free energy described above gives rise to an analogous

concept of free energy in statistics when the energy func-

tion is given by the negative log joint probability

� ln pðy; hjmÞ (Neal and Hinton 1998):

/ hð Þ ¼ � ln p y; hjmð Þ ¼ � ln p yjh;mð Þp hjmð Þ: ð8Þ

Hence, the log joint (which fully characterizes the sys-

tem) takes the role of the kinetic energy in the ideal gas

example above.

Inserting the expression for / (Eq. 8) into Eq. 4, we

obtain the following expression:

q hð Þ ¼ 1

Z
exp �/ hð Þð Þ ¼ 1

Z
exp ln p y; hjmð Þð Þ; ð9Þ

which together with the definition of the partition function

Z (Eq. 5), reveals that the equilibrium distribution of the

system is the posterior distribution (i.e., the joint proba-

bility divided by the model evidence):

q hð Þ ¼ exp ln p y; hjmð Þð Þ
R
exp ln p y; hjmð Þð Þdh ¼ p y; hjmð Þ

p yjmð Þ ¼ p hjy;mð Þ

ð10Þ

Based on this result, we can derive the information

theoretic version of the Helmholtz free energy, by inserting

the expressions for the internal energy (Eq. 2) and the

entropy (Eq. 3) into Eq. 6 and making use of the expres-

sion for / from Eq. 8:

�FH ¼
R
q hð Þ ln p y; hjmð Þdh�

R
q hð Þ ln q hð Þdh; ð11Þ

In analogy to Eq. 6, the first term on the right hand side

is an expectation over an energy function (cf. Equation 8);

while the second term represents the differential entropy

H q½ � ¼ �
R
q hð Þ ln q hð Þdh. Notably, under the choice of

the energy function in Eq. 8, the partition function (Eq. 5)

corresponds to the marginal of the joint probability

p y; hjmð Þ with respect to h. Comparing with Eq. 7, we see

that the negative free energy is equal to the log model

evidence (LME):

�FH ¼ ln p yjmð Þ: ð12Þ

Replacing the joint in Eq. 11 by the product of likeli-

hood and prior, the negative free energy can be decom-

posed into two terms that have important implications for

evaluating the goodness of a model:

�FH ¼
R
q hð Þ ln p yjh;mð Þp hjmð Þdh�

R
q hð Þ ln q hð Þdh;

ð13Þ

�FH ¼
R
q hð Þ ln p yjh;mð Þdh�

R
q hð Þ ln q hð Þ

p hjmð Þ dh; ð14Þ

�FH ¼ accuracy� complexity ð15Þ

The first term (the expected log likelihood under the

posterior) represents a measure of model fit or accuracy.

The second term corresponds to the Kullback–Leibler (KL)

divergence of the posterior from the prior, and can be

viewed as an index of model complexity. Hence, maxi-

mizing the negative free energy (log evidence) of a model

corresponds to finding a balance between accuracy and

complexity. We will turn to this issue in more detail below

and examine variations of this perspective under TI and

VB, respectively.

In the following, we will explicitly display the sign of

the negative free energy for notational consistency. In order

to highlight similarities with statistical physics and the

concepts of energy and potential, we will continue to

express the free energy as a functional of a (possibly non-

normalized) log density, such that

�FH /½ � ¼ ln
R
exp �/ hð Þð Þdh; ð16Þ

where / hð Þ is equivalent to an energy or potential

depending on h. Figure 1 summarizes the conceptual

analogies of free energy between statistical physics and

Bayesian statistics.

Thermodynamic integration (TI)

We now turn to the problem of computing the negative free

energy. As is apparent from Eq. 16, the free energy con-

tains an integral over all possible h, which is usually pro-

hibitively expensive to compute and thus precludes direct

evaluation. The basic idea behind TI is to move in small

steps along a path from an initial state with known FH to

the equilibrium state and add up changes in free energy for

all steps (Gelman and Meng 1998). This idea was initially

introduced in statistical physics to compute the difference

in Helmholtz free energy between two states of a physical

system (Kirkwood 1935). Other examples for the applica-

tion of TI in statistical physics are presented in Landau

(2015).

In Bayesian statistics, the same idea can be used to

compute the LME of a model m. This is because the dif-

ference in free energy associated with two potentials cor-

responding to the negative log prior /0 hð Þ ¼ �lnpðhjmÞ
and the negative log joint / hð Þ ¼ � ln p yjh;mð Þ �
ln pðhjmÞ (cp. Eq. 8) equals the LME. More precisely,

provided the prior is properly normalized, i.e.,R
p hjmð Þdh ¼ 1, substituting /0 and / into Eq. 16 yields
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FH /½ � � FH /0½ � ¼ � ln

Z
p yjh;mð ÞpðhjmÞdh

þ ln

Z
p hjmð Þdh ¼ � ln p yjmð Þ;

ð17Þ

The goal is now to construct a piecewise differentiable

path connecting prior and posterior and then compute the

LME by integrating infinitesimal changes in the free

energy along this path. A smooth transition between F /½ �
and F /0½ � can be constructed by the power posteriors

pb hjy;mð Þ (see Eq. 19 below) which are defined by the path
/b :

/b hð Þ ¼ �b ln p yjh;mð Þ � ln p hjmð Þ ð18Þ

with b� 0; 1½ �, such that /1 ¼ /. In the statistics literature, b
is usually referred to as an inverse temperature because it

has analogous properties to physical temperature in many

aspects. We will use this terminology and comment on the

analogy in more detail below.

The power posterior is obtained by normalizing the

exponential of �/b hð Þ:

pb hjy;mð Þ ¼ p yjh;mð Þbp hjmð Þ
Zb

; ð19Þ

Zb ¼
Z

p yjh;mð Þbp hjmð Þdh:

Combining this definition with Eq. 17, the LME can be

expressed as:

� ln p yjmð Þ ¼ FH /½ � � FH /0½ �; ð20Þ

¼
Rb¼1

b¼0

d

db
FH /b

� �
db; ð21Þ

¼ �
Rb¼1

b¼0

d

db
ln

Z
p yjh;mð Þbp hjmð Þdhdb:

ð22Þ

Applying the chain rule of differentiation (see supple-

mentary material section S11 for a detailed derivation), the

LME can be written in terms of an integral over an

expectation with respect to the power posterior:

ln p yjmð Þ ¼
Rb¼1

b¼0

R p yjh;mð Þbp hjmð Þ
Zb

ln p yjh;mð Þdhdb;

ð23Þ

¼
Rb¼1

b¼0

E ln p yjh;mð Þ½ �pb hjy;mð Þdb: ð24Þ

Fig. 1 Analogies between concepts of free energy in statistical physics and Bayesian statistics
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which we refer to as the basic or fundamental TI equation

(Gelman and Meng 1998).

Notably, the TI equation can also be understood in terms

of the definition of the free energy (Eq. 14) by noting that

the latter can be written as the sum of an expected log

likelihood and a cross-entropy term (KL divergence of the

power posterior from the prior):

�FH bð Þ ¼ b
R
pb hjy;mð Þ ln p yjh;mð Þdh�

R
pb hjy;mð Þ ln pb hjy;mð Þ

p hjmð Þ dh;

ð25Þ

�FH bð Þ ¼ bA bð Þ � KL pb hjy;mð Þjp hjmð Þ
� �

: ð26Þ

The first term, A bð Þ ¼ �oFH=ob, is referred to as the

accuracy of the model (see, for example, Penny et al.

2004a; Stephan et al. 2009), while the second term con-

stitutes a complexity term. Note that Eq. 26 is typically

presented in the statistical literature for the case of b ¼ 1

and describes the same accuracy vs. complexity trade-off

previously expressed by Eq. 14, but now from the specific

perspective of TI. Also note that A bð Þ is defined as the

negative partial derivative of the free energy. In contrast to

the full derivative, the partial derivative only considers the

direct dependence of FH on b, and ignores the indirect

dependence via the KL divergence term.

Figure 2 shows a graphical representation of the relation

conveyed by the fundamental TI equation (Eqs. 24) and 26.

For any given b, the negative free energy at this position of

the path �FH bð Þ can be interpreted as the signed area

below the curve A bð Þ ¼ �oFH=ob (i.e., the integral over

A �ð Þ from 0 to b), whereas the term b� A bð Þ is the rect-

angular area below A bð Þ. Equation 26 shows that the area

bA bð Þ þ FH bð Þ is the KL divergence of the corresponding

power posterior from the prior.

This relationship holds because, for the power posteriors

(Eq. 19), A( b) is a monotonically increasing function of b.
This is due to the fact that

oA bð Þ
ob

¼ Var ln p yjh;mð Þ½ �pb hjy;mð Þ [ 0: ð27Þ

See Lartillot and Philippe (2006) for a derivation of this

property. From this it follows that the negative free energy

is a concave function along b.
The theoretical considerations highlighted above and the

relation to principles of statistical physics render TI an

appealing choice for estimating the LME. However, the

question remains how the LME estimator in Eq. 24 can be

evaluated in practice. To solve this problem, TI relies on

Monte Carlo estimates of the expected value

E ln p yjh;mð Þ½ �pbðhjy;mÞ in Eq. 24:

EMC bð Þ :¼ 1

K

XK

k¼1

ln p yjhk;mð Þ � E ln p yjh;mð Þ½ �pb hjy;mð Þ;

ð28Þ

where samples hk are drawn from the power posterior

pbðhjy;mÞ. The remaining integral over b in Eq. 24 is a one

dimensional integral, which can be computed through a

quadrature rule using a predefined temperature schedule for

b (0 ¼ b0\b1\ � � �\bN�1\bN ¼ 1):

ln p yjmð Þ � 1

2

XN�1

j¼1

ðbjþ1�bjÞ EMC bjþ1

� �
þ EMC bj

� �� �
:

ð29Þ

The optimal temperature schedule in terms of minimal

variance of the estimator and minimal error introduced by

this discretization was outlined previously in the context of

linear models by Gelman and Meng (1998) and Calderhead

and Girolami (2009).

Note that each step bj in the temperature schedule

requires a new set of samples hk to be drawn from the

respective power posterior pbjðhjy;mÞ, contributing to the

high computational complexity of TI. However, since these

sets of samples are independent from each other, this can in

principle be done in parallel, provided suitable soft- and

hardware capabilities are available. An efficient way to

realize such a parallel sampling procedure is to adopt a

population MCMC approach in which MCMC sampling is

used to generate, for each bj, a chain of samples from the

respective power posterior pbjðhjy;mÞ. In addition, chains

from neighboring bj in the temperature schedule are

allowed to interact by means of a ‘‘swap’’ accept-reject

(AR) step (Swendsen and Wang 1986). This increases the

sampling efficiency and speeds up convergence of the

individual MCMC samplers. For readers unfamiliar with

Monte Carlo methods, a primer on (population) MCMC is

provided in the supplementary material S3. For a detailed

treatment, we refer to McDowell et al. (2008) and

Calderhead and Girolami (2009).

Fig. 2 Graphical representation of the TI equation. The free energy is

equal to the signed area below A ¼ �oFH=ob, and thus the area

Að1Þ þ FH is equal to the KL divergence of the posterior from the

prior. The same relation holds for any b 2 ½0; 1�
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So far, the computational requirement of sampling from

an ensemble of distributions (one for each value of b) has
limited the application of TI to high performance com-

puting environments and prevented its widespread use in

neuroimaging. Luckily, the increase in computing power of

stand-alone workstations and the proliferation of graphical

processing units (GPU), coupled with efficient population

MCMC samplers, offer possibilities to overcome this bot-

tleneck, which will be demonstrated below for a selection

of three examples involving synthetic and real-world

datasets. First, however, we will complete the theoretical

overview by briefly explaining the formal relationship

between TI and variational Bayes.

Variational bayes

Variational Bayes (VB) is a general approach to approxi-

mate intractable integrals with tractable optimization

problems. Importantly, this optimization method simulta-

neously yields an approximation to the posterior density

and a lower bound to the LME.

The fundamental equality which underlies VB is based

on introducing a tractable density q hð Þ to approximate the

posterior pðhjy;mÞ.

�FH ¼ ln p yjmð Þ ¼
Z

q hð Þ ln p yjmð Þq hð Þ
q hð Þ dh; ð30Þ

¼
Z

q hð Þ ln p y; hjmð Þq hð Þ
pðhjy;mÞq hð Þ dh; ð31Þ

¼
Z

q hð Þlnp yjh;mð Þdh
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Approx:accuracy

�
Z

q hð Þln q hð Þ
p hjmð Þdh

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Approx:complexity

þ
Z

q hð Þln q hð Þ
p hjy;mð Þdh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Error

ð32Þ

The last term in Eq. 32 is the KL divergence of the

approximate density q from the unknown posterior density;

this encodes the error or inaccuracy of the approximation.

Given that the KL divergence is never negative, the first

two terms in Eq. 32 represent a lower bound on the log

evidence �FH , and in the following we will refer to it as

the negative variational free energy �FVB.

In summary, the relation between the information the-

oretic version oHelmholtz free energy �FH , log model

evidence ln p yjmð Þ, and variational negative free energy

�FVB is therefore

�FH ¼ ln p yjmð Þ ¼ �FVB þ KL½q hð Þjjp hjy;mð Þ� ð33Þ

We highlight this relationship because many readers are

rightfully confused that the term ‘negative free energy’ is

sometimes used in the literature to denote the logarithm of

the partition function Z itself (i.e., �FH), as we have done

above, and sometimes to refer to a lower bound approxi-

mation of it (i.e.,� FVB). This is because the variational

free energy �FVB becomes identical to the negative free

energy �FH when the approximate density q equals the

posterior and hence their KL divergence becomes zero. In

this special case

max
q

�FVB q½ �½ � ¼ �FH : ð34Þ

To maintain consistency in the notation, we will dis-

tinguish �FH and �FVB. throughout the paper.

VB aims to reduce the KL divergence of q from the

posterior density by maximizing the lower bound �FVB as

a functional of q:

�FVB q½ � ¼
R
q hð Þ ln p yjh;mð Þdh�

R
q hð Þ ln q hð Þ

p hjmð Þ dh:

ð35Þ

When the functional form of q is fixed and parametrized

by a vector g, VB can be reformulated as an optimization

method in which g is updated according to gradient

oFVB q hjgð Þ½ �=og (Friston et al. 2007). Thus, the path fol-

lowed by g during optimization can be formulated as

_g ¼ � oFVB q hjgð Þ½ �
og

: ð36Þ

This establishes a connection between TI and VB. In the

former, the path of g corresponds to the path of b from 0 to

1, which was selected a priori with the conditions that

q hjb ¼ 0ð Þ ¼ p hð Þ; q hjb ¼ 1ð Þ / p yjhð Þp hð Þ ð37Þ

and the gradients

� oFH q hjbð Þ½ �
ob

ð38Þ

are used to numerically compute the free energy.

Different VB algorithms are defined by the particular

functional form used for the approximate posterior. In the

case of DCM, it is so far most common to use Variational

Bayes under the Laplace approximation (VBL). A sum-

mary of VBL for DCM is available in the supplementary

material S5, while an in-depth treatment is provided in

Friston et al. (2007).

Evaluating the accuracy of TI

In this section, we investigate the accuracy of LME esti-

mates obtained with TI, and compare the performance of

TI to that of two other sampling-based LME estimators, the

prior arithmetic mean (AME) and posterior harmonic mean

(HME) estimators. In contrast to TI, which requires sam-

pling from an ensemble of distributions (see Eq. 29), AME
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and HME only require samples from the prior or posterior

distributions, respectively. Hence, these two methods,

which are described in detail in the supplementary material

S6, are computationally significantly less demanding than

TI.

For the purpose of this comparison, we turn to a

Bayesian linear regression model with normal prior and

likelihood. This is a useful case for benchmarking because

the LME can be computed analytically. This model is

described by the following prior and likelihood function:

p hð Þ ¼ N h; 0;P�1
p

	 

;

p yjhð Þ ¼ N y;Xh;P�1
e

� �
;

ð39Þ

where h is the p� 1½ � vector of regression coefficients, y is

the M � 1½ � vector of data points, X is the M � p½ � design
matrix, and P�1

p and P�1
e are the covariance matrices of

the prior and errors, respectively. The analytic solution for

the LME of this model is given by Penny (2012) as:

ln

Z
p yjhð Þp hð Þdh ¼ 0:5 � ln Pj j � N ln 2pð þ ln Pej j þ ln Pp

�
�

�
�

� y� Xgð ÞTPe y� Xgð Þ�gTPpg
�
;

ð40Þ

P ¼ Pp þ XTPeX; ð41Þ

g ¼ P�1XTPey ð42Þ

For our simulations, we chose M ¼ 100, P�1
p ¼ 16Ip

and P�1
e ¼ 10Ie, where Ip and Ie are the corresponding

identity matrices. The design matrix was chosen to have a

block structure equivalent to a design for a one-way

ANOVA with p levels (for those values of p that do not

exactly divide by M, the excess data points were assigned

to the last cell). Synthetic data where generated by sam-

pling from the generative model defined in Eq. 39.

By varying p from 2 to 32 in steps of 1, we created a

series of models with increasing dimensionality. For each

value of p, we repeated the data generation process 10

times, drawing a new set of values for the regression

parameters h each time from the prior, and generating

observations y according to the likelihood. We then esti-

mated the LME using TI, AME and HME, and compared

the estimates against the analytically computed LME.

The TI approximation to the LME was computed using

64 chains with a 5th order annealing schedule, i.e. a tem-

perature schedule with 64 steps bj, with step size chosen

according to a fifth order power rule (Calderhead and

Girolami 2009). In each chain, we generated 6000 samples.

We then computed AME based on the samples from the

prior density and HME based on samples from the poste-

rior. Figure 3 shows the error in the LME estimates as a

function of the number of model parameters for the three

approaches. Consistent with previous reports, the results

show that HME overestimated the LME, while AME

underestimated it (Lartillot and Philippe 2006). Only TI

provided good estimates over the full range of models. This

indicates that, despite comparing unfavorably in terms of

computational efficiency, TI should still be preferred in

practice due to the large estimation error of AME and

HME, especially for higher-dimensional models (but see

Penny and Sengupta (2016) for variants of AME and HME

that solve some of the issues).

Application to DCM

Having established the accuracy of TI as an estimator for

the LME in a case where the analytic solution for the LME

is available, we now turn to the case of LME estimation

and model selection in the context of DCM. For this pur-

pose, we discuss two example applications. The first

example considers a simulated dataset where the true

model that generated each observation is known. This

serves to determine the ability of TI to identify the data-

generating model. In the second example, we analyze the

‘‘attention to motion’’ fMRI dataset (Buchel 1997), which

has been analyzed by numerous previous methodological

studies. Primers on DCM and Bayesian model selection are

provided in the supplementary material.

DCM: simulated data

In the first experiment, we used simulated data from 5

DCMs (linear: model 1; bilinear: models 2–4; nonlinear:

model 5) with two inputs (u1 and u2). The DCMs are

Fig. 3 Error in estimating the log evidence of linear models for three

different sampling approaches. The curves show mean and standard

deviation (error bars) over ten runs at each value of p (number of

GLM parameters) for thermodynamic integration (TI), posterior

harmonic mean estimator (HME) and prior arithmetic mean estimator

(AME)
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displayed in Fig. 4 and are available for download via the

ETH Research Collection (ETH Zurich 2020). The

numerical values of the connectivity matrices are listed in

the supplementary material S7. The BOLD signal data

were simulated assuming a repetition time (TR) = 2 s and

720 scans per simulation. The driving inputs were entered

with a sampling rate of 2:0Hz. Simulated time series were

corrupted with Gaussian noise yielding a signal-to-noise

ratio (SNR) of 1.0. Here, SNR was defined as the ratio of

signal standard deviation to noise standard deviation

(Welvaert and Rosseel 2013). This means that our simu-

lated data contained identical amounts of noise and signal,

representing a relatively challenging SNR scenario.

For each model, we generated 40 different datasets with

different instantiations of Gaussian noise, such that the

underlying time series remained constant. We then counted

how often the data-generating model was assigned the

largest model evidence and compared the ensuing values

across the different estimators (i.e., AME, HME, TI, VBL).

Notably, the absolute value of the log evidence of a given

model is irrelevant for model scoring; instead, its differ-

ence to the log evidence of other models is decisive.

In a pretesting phase, we found that TI generated

stable estimates of the LME using 64 chains. All simula-

tions were executed with a burn-in phase of 1� 104

samples, followed by an additional 1� 104 samples used

for analysis. We evaluated the convergence of the MCMC

algorithm by examining the potential scale reduction fac-

tor R̂ (Gelman & Rubin 1992) for samples of the log

likelihood of all chains. We found that R̂ was below 1.1 in

all but a few instances, indicating convergence. Estimated

LME values are displayed in Fig. 5 and Table 1. Consistent

with the linear model analysis in the previous section, the

HME was always higher and the AME always lower than

the TI estimate of the LME. VBL estimates were close to

the TI estimate. To test for significant differences in

accuracy of recovering the correct model by the different

algorithms, v2 tests were employed (inference method (i.e.,

TI, VB, HME, AME) vs inference result (i.e., number of

times correct and incorrect model was selected)). TI and

VBL were not significantly different (v2 ¼ 0:3; p ¼ 0:56),

but both TI and VBL (not shown) were significantly better

than AME (v2 ¼ 189:5; p\10�5) and HME

(v2 ¼ 25:4; p\10�5).

We then examined how often the data-generating model

was identified correctly by model comparison, i.e., how

often it showed the largest LME of all models. Of all

estimators, AME failed most frequently to detect the data-

generating model (Table 2). HME identified the correct

Fig. 4 Illustration of the five simulated 3-region DCMs used for

cross-model comparison. Self-connections are not displayed. The

variables u1 and u2 represent two different experimental conditions or

inputs. All models represented different hypotheses of how the

neuronal dynamics in area x3 could be explained in terms of the two

driving inputs and the effects of the other two regions x1 and x2.

Model m1 can be understood as a ‘null hypothesis’ in which the

activity of all the areas can be explained by the driving inputs. Models

m2 and m3 correspond to two forms of bilinear effect on the forward

connection of areas x1 and x2. Model m4 represents the hypothesis that

input u1 affects the self-connection of area x3 (not displayed). Model

m5 represents a non-linear interaction between regions x1 and x2.

Endogenous connections are depicted by gray arrows, driving inputs

by black arrows, bilinear modulations by red arrows and nonlinear

modulations by blue arrows. (Color figure online)
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model more consistently (Table 3). Both VBL and TI

displayed a similar behavior (Tables 4 and 5), although

model m5 was identified slightly more consistently identi-

fied by VBL. However, as displayed in Table 1, according

Fig. 5 Estimated LME for all models relative to TI when inverted

with the corresponding data-generating model under SNR = 1for 40

different models. Right panel zooms in the left panel. Red triangles

correspond to the HME, blue circles to the AME, and black squares to

VBL. HME was always higher and AME always lower than the TI

estimate. All LME estimates are shown after subtracting the TI-based

estimate for the same model

Table 2 Cross-model comparison results for AME in the case of

synthetic data (SNR = 1)

HME: synthetic data

Generation

m1 m2 m3 m4 m5

Inversion

m1 39 14 10 34 29

m2 1 13 11 3

m3 6 11 3

m4 3 4 2 5

m5 4 4 1 3

The row label indicates the data-generating model, the column index

is the inferred model

Table 3 Cross-model comparison results for HME in the case of

synthetic data (SNR = 1)

HME: synthetic data

Generation

m1 m2 m3 m4 m5

Inversion

m1 39

m2 40 12

m3 40 12

m4 40 4

m5 1 12

The row label indicates the data-generating model, the column index

is the inferred model

Table 4 Cross-model comparison results for VBL in the case of

synthetic data (SNR = 1)

VBL: synthetic data

Generation

m1 m2 m3 m4 m5

Inversion

m1 40

m2 40

m3 40

m4 40 1

m5 39

The row label indicates the data-generating model, whereas the col-

umn index is the inferred model

Table 1 LME estimated with TI

and VBL
TI VBL

Generating model Generating model

m1 m2 m3 m4 m5 m1 m2 m3 m4 m5

Inverting model

m1 762 0 0 0 0 746 18 16 - 3 11

m2 10 11155 10676 4242 4359 - 34 11101 10614 4182 4294

m3 6 10360 11683 2903 4349 - 39 10298 11627 2842 4288

m4 0 10038 9102 5163 4376 - 49 9984 9028 5097 4310

m5 84 9045 9190 2931 4430 44 9034 9181 2877 4375

Tables display the LME (summed across 40 simulations) of each combination of inverting and generating

models. Columns have been normalized by the lowest LME: according to TI. Columns on the right and left

tables share the same normalization and their absolute values can be directly compared. On most, but not all

occasions, VBL underestimated the LME compared to TI. However, for both VBL and TI the data-

generating model obtained the highest LME (marked in bold)
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to both inversion schemes, the data-generating model was

consistent with the model showing the highest LME.

Empirical data: attention to motion

In this example, we demonstrated TI-based parameter

estimation and model comparison for DCM on an empiri-

cal dataset. Since the previous two examples have shown

that TI consistently outperforms the other sampling-based

LME estimators, AME and HME, we limit our comparison

to TI and VB, from here on.

For the analysis of empirical data, we selected the ‘‘at-

tention to motion’’ fMRI dataset (Buchel 1997) that has

been analyzed in numerous previous methodological

studies (e.g., Friston et al. 2003; Marreiros et al. 2008;

Penny et al. 2004a; Penny et al. 2004b; Stephan et al.

2008). The original study investigated the effect of atten-

tion on motion perception (Buchel 1997); in particular, the

authors examined attentional effects on the connectivity

between primary visual cortex (V1), motion-sensitive

visual area (V5) and posterior parietal cortex (PPC). In

brief, the experimental paradigm consisted of four condi-

tions (all under constant fixation): fixation only (F), pre-

sentation of stationary dots (S), passive observation of

radially moving dots (N), or attention to the speed of these

dots (A). Four sessions were recorded and concatenated,

yielding a total of 360 volumes (TE ¼ 40ms; TR ¼ 3:22sÞ.
Three inputs were constructed using a combination of the

three conditions: stimulus ¼ Sþ N þ A, motion ¼ N þ A,

attention ¼ A. Driving inputs were resampled at 0:8Hz;

requiring a total of 1440 integration steps. Further details

of the experimental design and analysis can be found in

Buchel (1997).

One reason for selecting this dataset is that Stephan et al.

(2008) previously demonstrated that a nonlinear model

(model 4 in Fig. 6) had higher evidence than comparable

bilinear models (model 1–3 in Fig. 6). This case is of

interest for evaluating the quality of different LME esti-

mators, as one would expect that the introduction of non-

linearities represents a challenging case for VBL.

For TI-based LME estimation, 16� 103 samples were

collected from 64 chains, of which 8� 103 were discarded

in the burn-in phase. The convergence of the algorithm was

evaluated using the R̂ statistic of the samples of the log

likelihood of each chain and model. In all but one chain, R̂

was below 1.1, indicating convergence.

Table 6 summarizes the evidence estimates obtained

with TI and VBL. In comparison to previous results see

Table 8 in Stephan et al. (2008), three findings are worth

highlighting. First, as shown in Table 6, the VBL algorithm

reproduced the ranking of models reported in Stephan et al.

(2008), although an earlier version of the VBL algorithm

with different prior parameters and a different integration

scheme was used by Stephan et al. (2008). Moreover, our

TI implementation produced the same ranking as the one

obtained under VBL.

Second, the difference between the VBL free energy

estimates and the TI estimates varied considerably across

models. To investigate this variability, we compared TI and

VBL with regard to the accuracy term. The results are

summarized in the lower section of Table 7. Table 6 shows

that the discrepancies between VBL and TI varied across

models, and the difference was particularly pronounced for

the nonlinear model m4 ([ 40 log units).

Third, while VBL detected the most plausible model, the

findings from this dataset suggest that VBL-based inver-

sion of DCMs might not always be fully robust. In par-

ticular, the difference between the algorithms could be

attributed to the VBL algorithm converging to a local

extremum. To assess the differences between TI and VBL

more systematically, we initialized each algorithm 10 times

from different starting values that were randomly sampled

from the prior density. Figure 7 depicts the estimated

model evidence and accuracy and Fig. S1 in the supple-

mentary material S10 displays the predicted BOLD signal.

VBL estimates of the accuracy and LME displayed much

larger variance than the TI estimates. This suggests that the

greater variance of the VBL estimates is due to the

propensity of the gradient ascent used in VBL to converge

to local maxima.

The observations listed above highlight two important

challenges faced by VBL. Due to restricting the approxi-

mate posterior to a normal distribution, the negative free

energy obtained with VBL is a lower bound approximation

and hence, will always be smaller than the actual log-

model evidence, especially for nonlinear models with non-

normal posteriors. Independently from this, the presence of

local maxima in the optimization process means that VBL

Table 5 Cross-model comparison results for TI in the case of syn-

thetic data (SNR = 1).

TI: synthetic data

Generation

m1 m2 m3 m4 m5

Inversion

m1 40

m2 40

m3 40

m4 40 2

m5 38

The row label indicates the data-generating model, the column index

is the inferred model

Cognitive Neurodynamics

123



may in practice even fail to find the best lower bound, i.e.

the global maximum of the negative free energy. TI is able

to address both these issues, which will be important for

performing reliable subject-level inference.

Conclusion

In this paper, we have reviewed the theoretical foundation

of thermodynamic integration. In the process, we have

introduced the concept of free energy, which has found its

Fig. 6 Illustration of the four models used in Stephan et al. (2008)

representing different hypotheses of the putative mechanisms under-

lying attention-related effects in the motion-sensitive area V5. The

first three models are bilinear whereas the fourth model is a nonlinear

DCM. Endogenous connections are depicted by gray arrows, driving

inputs by black arrows, bilinear modulations by red arrows and

nonlinear modulations by blue arrows. Inhibitory self-connections are

not displayed. V1: primary visual area, V5 = motion sensitive visual

area, PPC: posterior parietal cortex. (Color figure online)

Table 6 Results of model

comparison, in terms of log

evidence differences with

respect to the worst model (m1),

from Stephan et al. (2008), who

used a different prior and

integrator as in here

m1 m2 m3 m4

Stephan et al. (2008) (VBL)

0.0 3.1 5.6 13.6

VBL

0.0 11.4 13.4 15.2

TI

0.0 11.5 14.8 43.5

Table 7 Log model evidence, accuracy and log likelihood at the MAP

estimate using both TI and VBL

Attention to motion dataset

m1 m2 m3 m4

Log model evidence

VBL - 1790.0 - 1778.6 - 1776.6 - 1774.8

TI - 1772.6 - 1761.1 - 1757.8 - 1729.1

Accuracy

VBL - 1547.6 - 1538.5 - 1531.6 - 1530.7

TI - 1525.6 - 1520.2 - 1511.8 - 1483.5

Fig. 7 Estimates of the LME and accuracy in the attention to motion

dataset after initializing VBL and TI from 10 different starting points

(yellow points) drawn from the prior. The inset on the right panel

zooms into the range of TI estimates. a LME estimates from VBL.

b LME estimates from TI. c Accuracy component of the LME

estimates from VBL. d Accuracy component of the LME estimates

from TI. The results demonstrate that TI estimates show much lower

variability as compared to VBL estimates. (Color figure online)
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way into information theory and Bayesian statistics from

its origin in statistical mechanics. Approaching TI from this

dual perspective allowed us to highlight the parallels and

analogous concepts shared between these different scien-

tific fields.

A key result was obtained in Eq. 24 (the TI equation),

which provided (1) a graphical interpretation of the LME

as the signed area under the curve given by the accuracy

A bð Þ ¼ �oFH=ob; and (2) a reliable method for estimating

LME via Monte Carlo samples drawn from the power

posteriors. The application of this method was demon-

strated in the second part of this paper on synthetic and

real-world datasets.

Specifically, we started with an experiment involving

synthetic data from a linear regression model with analyt-

ical solutions for LME. This experiment demonstrated that

TI produces accurate LME estimates and outperforms

computationally less complex sampling-based LME esti-

mators (AME and HME), justifying the additional

complexity.

Finally, we used synthetic and real-world fMRI data to

compare TI to VB, which is the current gold standard in the

context of model inversion and LME estimation for DCM.

Although VB was robust in most instances, we found

evidence for variability in the estimates due to local optima

in the objective function—especially in the case of the real-

world dataset, where the model space included nonlinear

DCMs, and for challenging scenarios where the number of

network nodes and free parameters is high. While this

problem can be ameliorated by initializing the VB algo-

rithm from different starting points or using global opti-

mization methods (see Lomakina et al. 2015), this would

reduce computational efficiency, which is the main justi-

fication for VB as the default choice for standard applica-

tions of DCM.

Hence, sampling-based approaches like TI might

become the method of choice when the robustness and

validity of single-subject inference is paramount. For

example, the utility of generative models for clinical

applications, such as differential diagnosis based on model

comparison or prediction of individual treatment responses

(Stephan et al. 2017), depends on our ability to draw reli-

able and accurate conclusions from model-based estimates.

In addition, the experiments presented in this paper also

demonstrated the practical feasibility of applying TI to

complex generative models like DCM, which are charac-

terized by high computational cost for evaluation of the

likelihood function. This is made possible by an imple-

mentation that relies on parallel computing techniques,

offering reasonable execution times on stand-alone work-

stations. Specifically, the computations for this paper were

performed on a workstation equipped with an Intel Core i7

4770 K (CPU) and a Nvidia Geforce GTX 1080 (GPU),

with a software implementation that allow obtaining as

many as 105 samples of realistic DCMs in only a few

minutes. Here, the important implication is that TI is no

longer a method that is exclusively reserved for users with

access to high performance computing clusters. The TI and

DCM implementations used in this paper is available to the

community as open source software (Translational Neu-

romodeling Unit 2014).

Finally, we would like to point out that although this

paper mainly focuses on the estimation of the model evi-

dence, which is the intended purpose of TI, TI also pro-

vides samples from the posterior distribution over model

parameters. This is due to the fact that TI’s temperature

schedule always includes bN ¼ 1 (cf. Equation 29),

meaning that the last power posterior being sampled from

is equivalent to the posterior distribution. While this is

conceptually different from the parametric distribution

which VB provides as an approximation to the true pos-

terior distribution, the posterior samples obtained by TI can

be used to calculate summary statistics, such as posterior

mean and variance or Bayesian credible intervals for the

DCM parameters. This enables the user to obtain quanti-

tative estimates of DCM parameters, such as the connec-

tion strength between brain regions or the strength of

contextual modulations, in addition to the inference over

network structure based on the comparison of LME.
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