Particulate matter estimation from photochemistry: A modelling approach using neural networks and synoptic clustering

Taylor, Michael ORCID: https://orcid.org/0000-0002-3473-3478, Retalis, Adrianos and Flocas, Helena A. (2016) Particulate matter estimation from photochemistry: A modelling approach using neural networks and synoptic clustering. Aerosol and Air Quality Research, 16 (9). pp. 2067-2084. ISSN 2071-1409

[thumbnail of aaqr-15-07-oa-0481]
Preview
PDF (aaqr-15-07-oa-0481) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

We report on the development and validation of a neural network (NN) model of PM10 concentrations in terms of photochemical measurements of NO, NO2 and O3 and temporal parameters that include the day of the week and the day of the year with its sinusoidal variation. A long-term record (≈ 10 yr) from 2001–2012 (inclusive) assembled from measurements taken at 10 station nodes in the air quality monitoring network of the Greater Athens Area in Greece has been used. Eight synoptic categorizations of the circulation at 850 hPa were used to partition the data record, and to train individual NNs with Bayesian regularization using 90% of available data for different atmospheric conditions. The time series of PM10 estimates was then reconstructed from the partitioned output. As a control, a NN without synoptic clustering was trained on the same data. The remaining 10% of the data was used for testing the simulation performance. NN models with synoptic clustering achieved an average root mean square error (RMSE) ≈ 16 µg m–3 across the station nodes with an average index of agreement (IA) of 0.71 (somewhat better than the control network whose performance statistics were RMSE ≈ 17 µg m–3 and IA = 0.61, respectively). For routine measurements below the EU Air Quality Directive limit value of 50 µg m–3, the average error is as low as RMSE ≈ 11 µg m–3 across the station nodes. NN models were found to strongly outperform analogous MLR models over all station nodes.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Groups > Climatic Research Unit
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 06 Aug 2020 23:52
Last Modified: 25 Sep 2024 14:54
URI: https://ueaeprints.uea.ac.uk/id/eprint/76355
DOI: 10.4209/aaqr.2015.07.0481

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item