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ABSTRACT 
 

We report on the development and validation of a neural network (NN) model of PM10 concentrations in terms of 
photochemical measurements of NO, NO2 and O3 and temporal parameters that include the day of the week and the day of 
the year with its sinusoidal variation. A long-term record (≈10 yr) from 2001–2012 (inclusive) assembled from 
measurements taken at 10 station nodes in the air quality monitoring network of the Greater Athens Area in Greece has 
been used. Eight synoptic categorizations of the circulation at 850 hPa were used to partition the data record, and to train 
individual NNs with Bayesian regularization using 90% of available data for different atmospheric conditions. The time 
series of PM10 estimates was then reconstructed from the partitioned output. As a control, a NN without synoptic clustering 
was trained on the same data. The remaining 10% of the data was used for testing the simulation performance. NN models 
with synoptic clustering achieved an average root mean square error (RMSE) ≈ 16 µg m–3 across the station nodes with an 
average index of agreement (IA) of 0.71 (somewhat better than the control network whose performance statistics were 
RMSE ≈ 17 µg m–3 and IA = 0.61, respectively). For routine measurements below the EU Air Quality Directive limit value 
of 50 µg m–3, the average error is as low as RMSE ≈ 11 µg m–3 across the station nodes. NN models were found to 
strongly outperform analogous MLR models over all station nodes. 
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INTRODUCTION 
 

Epidemiological studies have established a clear 
association between human exposure to ambient air pollution 
and the risk of increased mortality (Dockery and Pope, 1994; 
Boezen et al., 1999; Samet et al., 2000; Davidson et al., 2005; 
Kassomenos et al., 2008; Pope III et al., 2009; Rückerl et 
al., 2011; Raaschou-Nielsen et al., 2013). In 2012 alone, 
ambient air pollution was responsible for 3.7 million deaths; 
6.7% of total deaths that year (Brauer et al., 2012). One of 
the most important components of air pollution is particulate 
matter (PM) having aerodynamic diameters up to 10 µm 
(PM10) as this embraces both anthropogenic and natural 
pollutants (IPCC, 2013). While the highest concentrations of 
PM tend to be measured next to busy roads in megacities, the 
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observation of relatively high values of PM10 values at urban 
background stations (Vardoulakis and Kassomenos, 2008), 
suggests that large proportions of the population are being 
exposed to this type of ambient air pollution (Dimitriou 
and Kassomenos, 2014). In addition to the important impact 
of PM on human health, high PM concentrations are known 
to be harmful to ecosystems (Grantz et al., 2003) and strongly 
affect the balance between air quality and climate change 
(Unger et al., 2010; Tai et al., 2012; Barnes et al., 2013; 
Hedegaard et al., 2013; Mues et al., 2013). The European 
Commission has issued legislation (Directive 2008/50/EC) 
involving limit values to help control the level of PM. Two 
limit values have been set for PM10: i) the daily mean 
concentration of 50 µg m–3 should not to be exceeded more 
than 35 times per year and ii) the annual mean concentration 
should not exceed 40 µg m–3, and a “health-based” target 
value has been set for PM2.5 with an annual limit of 25 µg m–3. 
It should be noted that there is currently no regulation for PM1 
despite calls by the scientific community (Gerasopoulos et al., 
2007). As we write, 195 countries are attending the 2015 UN 
Climate Change Conference (UNCCC) in the 11th session 
of the meeting of the parties to the 1997 Kyoto Protocol and 
166 countries have submitted national commitments to reduce 
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their CO2 emissions. Importantly, PM is absent from the 
agenda. This is despite assessments of the International 
Panel on Climate Change (IPCC, 2013) who have called 
for expansion of global air quality monitoring of the 
spatiotemporal distribution of PM. 

PM levels show a great deal of spatial variability at the 
regional level (Hoek et al., 1997; Kassomenos et al., 2014) 
and also between and within large urban areas (Eeftens et 
al., 2012; Van Poppel et al., 2013; Kassomenos et al., 2014). 
However, the sparsity of ground-based monitoring stations 
has cast doubt on the generality of results obtained from 
point sampling and has motivated a shift in the last decade 
towards satellite mapping of surface PM concentrations 
estimated from aerosol optical depth (AOD) retrieved by 
space sensors (Hoff and Christopher, 2009), from LIDAR 
vertical profile information (Boyouk et al., 2010; Zeeshan 
and Oanh, 2014), or from simulations performed by global 
atmospheric chemistry models (Liu et al., 2004; van 
Donkelaar et al., 2006, 2010). The problem is that satellite 
estimates of surface air pollution need to be validated in 
pixels where coincident ground measurements exist. Indeed, 
the Surface PARTiculate mAtter Network (SPARTAN) 
described by Snider et al. (2015) has been initiated for 
precisely this purpose. In the context of satellite-derived 
PM models, it is important to note that the prediction of PM 
from AOD is accurate to only ≈ 30% (Hoff and Christopher, 
2009) and that the precision of the measurement of AOD 
itself is estimated to be only ≈ 20% accurate. Furthermore, 
a substantial range of skill has been observed in linear 
regression models of estimated PM (obtained from AOD 
retrievals) on measured PM values, with correlation 
coefficients (R) varying greatly (0.4 ≤ R ≤ 0.8) both regionally 
and also with aerosol type (Engel-Cox et al., 2004). As a 
result, such high levels of uncertainty have so far hampered 
the incorporation of such models in operational satellite 
retrieval of PM10 and/or PM2.5 concentrations. Given that 
the spatial resolution of ground-based PM measurements is 
low and inhomogeneous, and that this limits the capacity 
for validating satellite-derived estimates, there is a need to 
supplement the SPARTAN network of ground-based 
measurements with independent estimates of PM. In this 
paper, we therefore develop and validate a data-driven 
approach for estimating PM10 directly from photochemical 
measurements and meteorological parameters since these 
are both more spatially representative and are also routinely 
recorded by station nodes in existing air quality monitoring 
networks . 

In the context of meteorology, evidence is also growing 
with respect to the impact of atmospheric circulation and 
synoptic conditions on PM; in particular the role of long-
range transport on elevated PM10 levels. In a study of PM 
in European capitals, Kukkonen et al. (2005) concluded 
that the vast majority of cases where PM10 values exceeded 
the EC Directive were related to the prevalence of specific 
meteorological conditions including high pressure systems 
and temperature inversions. A more important example is 
the appearance of extreme smog episodes in the Greater 
Athens Area (GAA) in Greece which has been found to be 
associated with stagnating and re-circulating air masses 

(Vardoulakis and Kassomenos, 2008). In a landmark study 
involving a statistical determination of the variables that 
Granger causes the variability in PM10 in the GAA, Sfetsos 
and Vlachogiannis (2010) established causal relationships 
between the prevailing weather conditions and the observation 
of elevated values of PM10. This conclusion is also confirmed 
by the study of Yuval et al. (2012) who found that general 
levels of air pollutants and their spatial distribution are 
determined by the state of the atmosphere with most of the 
variability being associated with the atmospheric synoptic 
scale. These studies suggest that synoptic conditions should 
be a key element in the development of models of PM. For 
a survey of the role of meteorology on different PM size 
fractions (PM10, PM2.5 and PM2.5–10) in the GAA used as 
the study region in this paper, we refer the reader to Pateraki 
et al. (2012). The GAA is an important location for air 
pollution studies since it is situated at an important global 
air pollution cross-road, and has a well established air quality 
monitoring network contributing a long-term (decadal) data 
record of measurements of meteorological parameters and 
atmospheric chemistry. While not meeting the population 
criteria of a megacity per se, pollutant concentrations in 
Athens have been found to rival cities having tens of millions 
of inhabitants (Kanakidou et al., 2011) and have emerged as 
a result of the impact of the 2008 financial crisis on 
household fuel bills and wood burning during the winter 
months (Vrekoussis et al., 2013).  

In constructing a model of PM in terms of chemical, 
meteorological and/or temporal parameters, it is important 
to understand how PM co-varies (i.e., correlates) with each 
of them. In relation to chemistry, a 2003 study in the GAA 
(Chaloulakou et al., 2003a) found that annual Pearson 
product-moment correlations (R) between PM10 concentrations 
and routinely measured chemical variables were strong in 
the case of CO (0.71 ≤ R ≤ 0.72), NO and NOx (0.64 ≤ R ≤ 
0.69), moderate for SO2 and NO2 (0.49 ≤ R ≤ 0.6), weak to 
moderate for surface temperature (0.39 ≤ R ≤ 0.46), and 
moderately-negative (i.e., inversely correlated) for local wind 
speed (–0.43 ≤ R ≤ –0.54). The measurement of the variation 
of PM10 in 31 Chinese provincial capital cities using data 
from 286 monitoring sites (Xie et al., 2015) found that the 
pairwise correlation between PM10 and O3 was weak but that 
the correlation with CO was unstable (highly variable). These 
studies suggest that PM10 is dependent upon photochemical 
“markers” of ambient air pollution and fairly robust to 
standard meteorological parameters. In a very comprehensive 
study, Kukkonen et al. (2003) used 4 temporal variables (the 
hour, the day of the week and the sine and cosine of the 
day of the year) and a set of 34 meteorological variables (see 
Table 1 of Kukkonen et al., 2003 for details) to construct a 
neural network (NN) 1-step ahead forecast model of PM10 in 
terms of time lagged values of PM10 and CO measured in 
downtown Helsinki. However, the performance skill of the 
NN was found to be too low to suggest its adoption for 
predicting spatial concentration distributions in the urban 
areas. A similar finding was obtained in the GAA where 
the impact of meteorological variables (ambient temperature, 
wind speed and direction, and relative humidity) and the day 
of the week as a temporal variable on the next-day prediction 
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Table 1. Description of the 20 station nodes of the air quality monitoring network in the Attica region contributing 
chemical measurement data during the ≈10 yr study period: 2001–2012 (inclusive) used in this work. 

Abbrev. Site Name Source Type Lat. (°N) Long. (°E) Elevation (m)
AGP Agia Paraskevi Suburban-Background 23.8194 37.9951 290 
ATH Athinas Urban-Traffic 23.7268 37.9782 100 
ALI Aliartos Background 23.1103 38.3752 110 
ARI Aristotelous Urban-Traffic 23.7276 37.9880 95 
GAL Galatsi Suburban-Background 23.7482 38.0203 154 
GEO Geoponiki Suburban-Industrial 23.7068 37.9836 40 
GOU Goudi Urban-Traffic 23.7674 37.9841 155 
ELE Elefsina Suburban-Industrial 23.5384 38.0514 20 
PAN Zografou Suburban-Background 23.7867 37.9696 245 
THR Thrakomakedones Suburban-Background 23.7582 38.1435 550 
KOR Koropi Suburban-Background 23.8790 37.9013 140 
LIO Liosia Suburban-Background 23.6978 38.0768 165 
LYK Lykovrisi Suburban 23.7888 38.0679 234 
MAR Marousi Urban-Traffic 23.7874 38.0308 170 
SMY Nea Smyrni Urban-Background 23.7130 37.9320 50 
OIN Oinofyta Suburban-Industrial 23.6389 38.3062 100 
PAT Patission Urban-Traffic 23.7330 37.9995 105 
PIR Pireas 1 Urban-Traffic 23.6452 37.9447 4 
BIO Pireas 2 Urban-Background 23.6527 37.9420 25 
PER Peristeri Urban-Background 23.6884 38.0208 80 

 

of PM10 with a NN led to only a marginal improvement in 
model skill as compared to a nonlinear autoregressive model 
that depended only on the lagged value of PM10 (Chaloulakou 
et al., 2003b). There is an indication that synergistic 
approaches like the one adopted by Michaelides et al. (2011) 
whereby a NN was first deployed to classify synoptic patterns 
and this is then integrated with satellite AOD retrievals and 
time-lagged PM10 measurements in order to make one-step-
ahead predictions of PM10, have the potential to better 
capture the complex dynamics involved. So, while there are 
indications that NN models of PM10 have the potential to 
provide independent estimates of PM, a high skill recipe 
involving chemical inputs, temporal and meteorological 
variables has yet to be found. With this in mind, in this paper 
we exploit the long record of coincident observations of a 
broad range of air pollutants available at nodes in the GAA 
air quality monitoring network combined with the power of 
permutation analysis, synoptic clustering and NN models, to 
develop and test a general spatiotemporal model of PM10 that 
can potentially fill-in data gaps and support the development 
of more spatially representative prognostic models. To 
help maximize the likelihood of the uptake of the models 
we develop and their general utility, we will focus on 
photochemical measurements that are routinely made, and 
we use publicly-available maps of atmospheric circulation.  

The rest of this paper is arranged as follows. The next 
section presents the data sources used in this work as well 
as a sensitivity analysis of the chemical constituents with 
multiple linear regression (MLR) used to determine the 
optimal combination of photochemical measurements in the 
NN models developed. This is followed by a description of 
the methodology adopted to construct and train NN solvers 
for PM10 from input variables that include photochemical 
measurements of NO, NO2 and O3, associated temporal 

parameters, and synoptic conditions together with training 
statistics. In this section, we also provide references on the 
Bayesian regularization procedure for nterested readers. In 
the results section, daily PM10 simulations are assessed using 
performance statistics for NNs trained with and without 
synoptic clustering and are compared against the results of 
the MLR model. The discussion section brings out our main 
findings and reports on the regimes of validity and general 
accuracy of the NN models. Finally, we conclude with a 
review of the potential of this approach for extending studies 
and data records of PM10.  
 
METHODS 
 

In this work, data is drawn from 2 sources: in situ chemical 
measurements, and a daily synoptic categorization at the 
850 hPa isobaric level. The dataset of coincident values 
was constructed from measurements taken at 20 station 
nodes in the GAA. In terms of geographical coverage, the 
GAA contains the capital of Greece, Athens, and spans a 
basin on the west coast of the Attica Peninsula in a small 
area of just 450 km2 containing over 3.8 million inhabitants 
(35% of the total population of Greece). The GAA is subject 
to significant local sources of aerosol such as traffic, small to 
medium-scale industry, domestic combustion of fossil fuel 
and biomass, but, as we mentioned in the introduction, also 
long-range transport of atmospheric PM and ozone 
precursors. Surrounded by mountains on three sides, the 
topography of the area is unfavorable for the dispersion of 
air pollutants, and ventilation of the basin takes place only 
under northeasterly flow (Grivas et al., 2008).  
 
In Situ Chemical Data 

A long (≈10 yr) data record (2001-2012 inclusive) of 
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concentration measurements of 10 different chemical 
species (CO, NO, NO2, NOx, O3, SO2, PM2.5, PM10, C6H6 
and ‘smoke’) has been assembled from station nodes in the 
air quality monitoring network spanning the GAA. The 
characteristics of the sites is summarized in Table 1 and 
their geographical distribution is shown in Fig. 1 together 
with a “microarray” depicting data availability. 

The spatial distribution of station nodes is not 
homogeneous and there is a much higher density of sites 
occupying the south-eastern part of the study region centred 
on the PAT site. Measurements of CO, NO, NO2, NOx, O3, 
SO2 and C6H6 are provided at the hourly timescale and 
measurements of PM2.5, PM10 and smoke are provided daily. 
All measurements are in units of µg m–3 apart from CO 
which is in mg m–3. There is also strong inhomogeneity in 
the array of chemical data as presented in the microarray 
of chemical measurements in Fig. 1. A first observation is 

that while chemical data for CO, NO, NO2, O3 and SO2 are 
the most numerous (being in excess of 10,000 measurements 
at any given station node), the spatial representivity of CO 
is low with measurements only available at 8 of the 20 
station nodes. The record of C6H6 measurements is volumous 
but only exists at the PAT station. Smoke measurements 
are only coincident with PM10 at the ARI site. The lack of 
spatial representivity and utility of C6H6 and smoke led us 
to exclude these chemical species from our study. A word 
of caution here is in order here. While there likely to be 
overlap between some of the chemical constituents present 
in smoke (e.g., NOx) and the concentration of individual 
species measured, in this study, we do not attempt to decouple 
these effects due to the large uncertainty involved in not 
having spatially-representative data across the network of 
stations studied. Instead, we wish to emphasize the lowest 
common denominators - the routine measurements of 

 

 
Fig. 1. Upper Panels: The Attica study region in Greece and the location of the 20 air quality monitoring station nodes. 
Lower Panel: The number (N) of chemical concentration measurements at each station for the period 2001–2012 (inclusive). 
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individual chemical constituents measured directly, in the 
hope of widening the applicability and generality of the 
model for estimation of PM in monitoring studies. The 
record of PM10 and PM2.5 measurements is smaller than the 
photochemical data (numbering up to several 1000 records) 
since measurements are made daily, and are correspondingly 
less numerous than hourly data by a factor of 24. Only 4 
station nodes (AGP, GOU, LYK and PIR) providing PM2.5 
data are coincident and overlap with the 12 station nodes 
providing PM10 data. Since our aim here is to construct and 
validate a multivariate model of the spatiotemporal variation 
of PM10 concentrations across the study region using a NN, 
synchronous data is required (i.e., it is necessary to supply 
simultaneous values of dependent and independent variables). 
This places a constraint on the number of data records and 
consequently the level of chemical detail. It is therefore 
necessary to quantify how the number of sites providing 
synchronous values varies with the number of different 
chemical species included. In order to do this, daily values 
and daily average values were selected. To be more specific, 
for the chemical species CO, NO, NO2, O3, PM2.5, PM10 
and SO2, we extracted synchronous data for each of the 52 
different chemical combinations that included PM10. We then 

constructed a MLR model having the general form: PM10 = 
f(CO, NO, NO2, O3, PM2.5, SO2) for each combination. To 
quantify the appropriateness of using each chemical 
combination for constructing a multivariate NN model of 
PM10 the value of the coefficient of determination (R2) 
calculated from the goodness of fit of the MLR model as 
compared with the actual PM10 measurements, was used as 
a statistic. The rationale behind such an sensitivity analysis 
is to quantify and make objective the choice of chemical 
input data to be used for the construction of an NN model, 
i.e., the choice of explanatory variables. 

Table 2 shows the results of this analysis for combinations 
of chemical species that provide synchronous data for at least 
3 station nodes (so as to guarantee a minimum level of spatial 
representivity). Note that the number of input chemical 
species used in this pre-processing data compression step 
varies from 1 to 6 (the latter corresponds to the case of an 
input vector containing all of CO, NO, NO2, O3, PM2.5 and 
SO2, and which gave a goodness of fit value of R2 = 0.432 
at the PIR station). 

Table 2 shows that there is a trade-off between potential 
model complexity (in terms of the number of different 
chemical species included) and the spatial extent of 

 

Table 2. Sensitivity analysis on the chemical constituents. The value of the coefficient of determination (R2) at each station 
node for input chemical species combinations corresponding to at least 3 station nodes (N). The value of the median value 
of R2 calculated across contributing station nodes in each combination is provided and used to rank the input parameter 
combinations across all contributing stations. 

Inputs AGP ALI ARI GOU ELE PAN THR KOR LYK MAR OIN PIR N Median
NO, NO2, O3, PM2.5 0.61 0.66 0.40 3 0.61

NO, O3, PM2.5 0.61 0.64 0.36 3 0.61
NO, NO2, PM2.5 0.60 0.66 0.40 3 0.60

NO, PM2.5 0.60 0.63 0.35 3 0.60
NO2, O3, PM2.5 0.59 0.66 0.34 3 0.59

NO2, PM2.5 0.57 0.63 0.32 3 0.57
PM2.5 0.57 0.56 0.29 3 0.56

CO, NO, NO2, O3 0.41 0.36 0.28 3 0.36
CO, NO, NO2 0.40 0.35 0.28 3 0.35
CO, NO2, O3 0.38 0.33 0.26 3 0.33

CO, NO2 0.38 0.33 0.27 3 0.33
O3 0.16 0.45 0.34 0.23 0.03 0.47 0.60 0.02 0.33 9 0.33

CO, NO, O3 0.29 0.35 0.28 3 0.29
NO, NO2, O3, SO2 0.22 0.31 0.36 0.04 0.36 0.12 0.29 7 0.29

CO, NO 0.28 0.34 0.27 3 0.28
NO, NO2, SO2 0.09 0.29 0.44 0.26 0.04 0.35 0.11 0.27 8 0.26
NO, NO2, O3 0.22 0.30 0.25 0.24 0.16 0.07 0.41 0.35 0.05 0.26 10 0.25

CO 0.17 0.30 0.24 3 0.24
CO, O3 0.17 0.30 0.24 3 0.24
NO2, O3 0.20 0.29 0.22 0.24 0.16 0.07 0.36 0.20 0.02 0.10 10 0.20
NO, NO2 0.10 0.28 0.46 0.36 0.16 0.06 0.11 0.05 0.41 0.34 0.04 0.25 12 0.20

NO2, O3, SO2 0.19 0.30 0.32 0.04 0.13 0.09 0.18 7 0.18
NO2, SO2 0.08 0.26 0.26 0.26 0.03 0.12 0.08 0.16 8 0.14

NO2 0.09 0.26 0.22 0.35 0.16 0.02 0.11 0.05 0.36 0.19 0.01 0.09 12 0.13
NO, O3, SO2 0.13 0.10 0.16 0.04 0.36 0.11 0.29 7 0.13

NO, O3 0.11 0.11 0.13 0.13 0.05 0.05 0.30 0.34 0.04 0.26 10 0.12
NO, SO2 0.04 0.06 0.37 0.14 0.03 0.35 0.10 0.27 8 0.12

NO 0.02 0.07 0.41 0.23 0.08 0.00 0.03 0.04 0.30 0.34 0.04 0.24 12 0.08
SO2 0.03 0.00 0.07 0.09 0.00 0.02 0.00 0.14 8 0.03
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synchronous data available (in terms of the number of 
contributing station nodes). Within these constraints, the 
optimal multivariate model arising from this data pre-
processing step is that corresponding to the highest value 
of N, and concurrently the highest value of median R2, and 
involves the chemical species quadruplet: PM10, NO, NO2, 
O3. This optimal data combination involves synchronous 
data from the 10 station nodes: AGP, ALI, ELE, PAN, THR, 
KOR, LYK, MAR, OIN and PIR. Note that, while the 
actual performance of the multiple linear model in terms of 
the magnitude of R2 is not important in the context of the 
aim of this work - which is to develop a much more powerful 
and accurate model, it is a necessary pre-processing step for 
data compression in terms of allowed chemical complexity 
in the model being constructed. Since the need to maximize 
the spatial representivity of our model was a constraint in our 
study, rather than perform a correlation analysis at each site 
and report the magnitudes and signs of the impact of each 
explanatory variable on the modeled PM, we have opted 
instead to show the overall effect of the choice of explanatory 
variables on modeled PM10 at each station by ranking 
goodness of fit statistics (the coefficient of determination, R2). 
 
Synoptic Categories for Clustering 

The classification of the synoptic scale atmospheric 
circulation we adopt derives from the manual scheme 
proposed by Kassomenos et al. (1998a). The scheme has 
already been employed with success in connection to air 
quality (Kassomenos et al., 1998b), daily mortality 
(Kassomenos et al., 2001) and urban heat islands over the 
GAA (Michalakakou et al., 2002). More recently, Zagouras 
et al. (2012) automated the scheme by applying a new 
method based on graph theory. In particular, eight synoptic 
categories were identified based on the geopotential 
distribution at 850 hPa isobaric level and the flow direction. 

The 850 hPa isobaric level, representative of the low level 
troposphere, is preferable to the use of the surface 
geopotential, as it avoids topographical effects. The 8 
categories are statistically-distinct and were found to be 
representive of the whole range of synoptic scale patterns 
over the Mediterranean region (Kassomenos et al., 1998a), 
and are shown in Fig. 2.  

In this study, the daily synoptic classification was 
applied to the GAA for the period 2001–2012 (inclusive) 
by employing the charts at 12:00 UTC derived from the 
European Meteorological Bulletin (EMB). The time series 
of daily synoptic conditions comprises a total of 4164 
categorizations. The categories, the number of days where 
the atmospheric circulation corresponds to each category, 
and their descriptor are as follows:  
● Synoptic category 1 (465 days): South-Westerly Flow. A 

trough is observed south-west of the GAA, resulting in 
south-westerly flow, being accompanied by advection of 
warm and moist air masses from Africa (Fig. 2(a)). 

● Synoptic category 2 (401 days): North-Westerly Flow. 
When the trough has passed, a strong north-westerly flow 
is established over GAA. This category is characterized by 
strong cold air advection (Fig. 2(b)). 

● Synoptic category 3 (396 days): Long-Wave Trough. 
Greece is dominated by a quasi stationary long-wave 
trough with its axis being positioned over GAA (Fig. 2(c)). 
This category is related to rainfall. 

● Synoptic category 4 (465 days): Closed Low. This category 
is characterized by the presence of a closed low, being 
accompanied by intense winds, usually from the northern 
sector, and rainfall (Fig. 2(d)). 

● Synoptic category 5 (235 days): Zonal Flow. The 
circulation is almost zonal over the GAA, resulting in a 
prevailing westerly flow (Fig. 2(e)) with considerably 
lower intensity in the warm period of the year. 

 

 
Fig. 2. Charts of the atmospheric circulation at the 850 hPa isobaric level (as derived from the European Meteorological 
Bulletin) for each of the 8 statistically-distinct synoptic categories over the Greater Athens Area (GAA): a) South-Westerly 
Flow, b) North-Westerly Flow, c) Long-Wave Trough, d) Closed Low, e) Zonal Flow, f) Open Anti-Cyclone, g) Closed 
Anti-Cyclone, h) High-Low, as per the taxonomy provided by Zagouras et al. (2012). 
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● Synoptic category 6 (1207 days): Open Anti-Cyclone. A 
large-scale ridge dominates over the Greek area, usually 
for several days (Fig. 2(f)). with weak variable winds, 
favouring the development of local flows.  

● Synoptic category 7 (76 days): Closed Anti-Cyclone. This 
category is characterized by the presence of a closed anti-
cyclone that extends over the major Greek area (Fig. 2(g)). 
This category appears with similar characteristics to the 
previous one, but causes weaker winds or calm conditions.  

● Synoptic category 8 (919 days): High–Low. A ridge is 
combined with a trough over the central-eastern 
Mediterranean basin, resulting in rather complicated 
regimes over GAA. In the warm period, this category is 
mainly characterized by a strengthening of the pressure 
gradient and strong north-easterlies (the well known 
“Etesians”) that blow over the Aegean Sea and into the 
GAA (Fig. 2(h)). 
Cluster indices (1–8) corresponding to the synoptic 

category over the GAA on each day were then used to 
partition the coincident chemical data for PM10, NO, NO2 

and O3 from the 10 stations: AGP, ALI, ELE, KOR, LYK, 
MAR, OIN, PAN, PIR, THR into 8 subsets (one for each 
different synoptic category), under the assumption that the 
entire study region was governed by the same atmospheric 
circulation on any individual day. 
 
Temporal Inputs 

In their study to predict urban PM10 (and also NO2) 
concentrations in central Helsinki using NN models, 
Kukkonen et al. (2003) found that it was necessary to 
incorporate the temporal/periodic variables into their NN 
models. The basis for including such periodic components 
in air quality forecasting is well established (Kolehmainen 
et al., 2001) and we implicitly included the day of the 
week (DOW), the day of the year (DOY) and Sin(DOY) 
and Cos(DOY) into our model design. As mentioned in the 
introduction, the models we develop aim to address the 
lack of success in modeling PM10 in previous studies by: i) 
increasing the complexity of the range of chemical inputs 
used in the NN model and ii) by training different NNs for 
different and specific atmospheric circulation conditions. 
The subject of spatiotemporal prediction and forecasting of 
PM10 using lagged photochemical inputs will be the focus 
of a follow-up paper.  
  
Statistics and Treatment of Errors  

In Appendix A we present a brief description of the 
difference statistics used to assess the performance of the 
models developed in this work. While, measurement errors 
exist in the determination of the chemical concentration of 
each species and also in the assignment of synoptic 
categories to atmospheric circulation, it is assumed here 
that the observations are “error-free” so that the statistical 
framework described above is valid and can be applied. In 
this work then, the goodness of fit of NN model simulations 
to measurements of PM10 will be assessed with reference 
to the above statistics. We wish to note also that the above 
statistics will be calculated for measurements of PM10 
above and also below the daily mean limit value of PM10 = 

50 µg m–3 set by the EU Air Quality Directive. 
 
Data pre-Processing  

The sensitivity analysis applied to the chemical in situ 
data is an important step in model design to enhance the 
information content of the data. The dimensionality reduction 
it provides, like alternative approaches (e.g., principal 
components analysis or factor analysis) helps reduce 
parameter redundancy in the model. Another key step in 
preparing our data for use in model construction was 
normalization to remove potentially undesirable variances 
that arise from parameters having very different min-max 
ranges. In the neural network (NN) models we develop 
(described in the next section), all input and output 
matrices were preprocessed by mapping each parameter’s 
mean to 0 and their standard deviations to 1 (i.e., to z-scores). 
In addition, a random number generator was used to ensure 
that identical initial weights were used in each run so that 
NN models with the same initial conditions could be 
compared. In particular, the twister algorithm (Matsumoto 
and Nishimura, 1998) based on Marsenne prime (219937−1) 
was called with a constant integer seed value to return a 
single uniformly distributed pseudo-random number in the 
interval (0, 1). 
 
THE NEURAL NETWORK MODEL 
 

In this section, we describe the construction, training and 
validation of a NN model for retrieval of PM10 estimates 
(outputs) from time series measurements of the daily 
photochemistry (NO, NO2 and O3) together with the periodic 
temporal variables: DOW, DOY, Sin(DOY) and Cos(DOY) 
as the input variables. For multivariate and temporally-
static input-output data, a feed-forward NN having at least 
one layer of “hidden” neurons whose activation functions 
are general nonlinear sigmoidal functions (e.g., the tanh 
hyperbolic tangent function) has been proven to be able to 
operate as a universal function approximator (Cybenko, 1989; 
Hornik, Stinchombe and White, 1989). This means that, given 
enough hidden neurons and training data, such networks are 
capable of learning the exact mathematical relation between 
inputs and outputs. Fig. 3 presents the topology of a generic 
3-layer multiple input, single output function approximating 
NN. 

The exact mathematical equation relating the output to the 
inputs for this type of NN is given by the matrix equation (by 
analogy with the method described in Taylor et al. 2014): 
 
Y = f 3 (LW3.2f 2(LW2,1f 1 (IW1,1 X + b1) + b2) + b3) (1) 
 

The multiplication of the matrix IW1,1 and the vector X is 
a dot product equivalent to the summation of all input 
connections to each neuron in the hidden layer. Eq. (1) is 
the continuous (nonlinear) functional approximation that 
relates the output vector to the matrix of input vectors.  

For the NN models we construct in this work, Y = 
[PM10]

T and X = [NO, NO2, O3, DOW, DOY, Sin(DOY), 
Cos(DOY)]T. The performance of NN models depends on 
their architecture (Bishop, 1995) and it is recommended that a 
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Fig. 3. Schematic showing the neural connectivity between input parameters and an output parameter in a multiple input, 
single output feed-forward NN having 2 layers of hidden neurons and a linear output layer. 

 

sensitivity analysis is performed on the network parameters 
(Taylor et al., 2014). To identify candidate optimal NN model 
structures, we initially trained a grid of NNs having a range of 
architectures: a) with 1 or 2 hidden layers of neurons, b) with 
between 10 and 40 neurons with tanh activation functions and 
c) with the proportion of training data varying between 70% 
and 90%. The NN models were coded using MATLAB’s 
object-oriented scripting language in conjunction with its 
Neural Network Toolbox (Beale et al., 2015). The size of 
the available data record is 17,760 coincident input-output 
vectors. 90% of the dataset (16,021 records) was used for 
NN training and the remaining 10% of the dataset (1,776 
records) was used for simulation (see the Results section). 
The same training data was used in training each NN in the 
grid of different architectures and the number of learning 
iterations was set to 100.  

The training algorithm used for the NN models developed 
in this study is Bayesian regularization using a Laplace prior 
(Williams, 1995) based on the Bayesian framework described 
by Mackay (1992). Bayesian regularization converts a 
nonlinear regression into a "well-posed" statistical problem by 
minimizing a linear combination of squared errors and 
weights and modifies the linear combination so that at the end 
of training the resulting network has good generalization 
qualities (Beale et al., 2015). Bayesian regularization in 
MATLAB automates the determination of the optimal 
regularization parameters in its NN training function 
“trainbr” and takes place within the Levenberg-Marquardt 
algorithm where back-propagation is used to calculate the 
Jacobian of performance with respect to the weight and 
bias variables (Beale et al., 2015). In line with the guidance 
of MATLAB’s Neural Network Toolbox User’s Guide (Beale 
et al., 2015), we scaled all network inputs and targets to 
the range [–1,1] during training and then inverted outputs 
back to their true scales for application of the difference 
statistics described in Appendix A. For mathematical detail 
of the statistical regularization procedure implemented by 

MATLAB’s “trainbr” NN training function we refer the 
reader to Williams (1995) and Mackay (1992). Bayesian 
regularization is well suited to complex/nonlinear problems 
involving a sizeable number of hidden neurons (e.g., > 10) 
and deep learning (2+ layers of hidden neurons) where, by 
restricting the magnitudes of weights, this method avoids 
overfitting. By optimizing the model parameters, it also 
has better generalization properties that other NN learning 
algorithms that may overfit or get trapped in local minima. 
Indeed, this was the main driving force behind our choice 
of Bayesian regularization - i.e., it was found to perform 
much better than three other standard back-propagation 
training algorithms (the Levenberg-Marquardt algorithm 
“trainlm”, the resilient back-propagation algorithm “trainrp” 
and the Scaled Conjugate Gradient algorithm “trainscg” 
training functions in MATLAB). In contrast to the high 
target versus output correction values obtained with Bayesian 
regularizarion training (R = 0.97 for the optimal NN in 
Table 3), the other algorithms achieved much lower values 
in the range 0.52 ≤ R ≤ 0.73 for the optimal NN architecture 
(2 layers of 30 hidden neurons). We will see in the results 
section that NN models trained with Bayesian regularization 
strongly outperform analogous MLR models (see Table 11) 
and we recommend that this scheme is adopted for problems 
of similar complexity. 

For each NN, the back-propagation optimization algorithm 
(Rumelhart et al., 1986) then proceeded to minimize the 
mean squared error (MSE) calculated from the difference 
between NN-derived PM10 outputs (yi) and target PM10 
measurements (ti) in the validation dataset (100% - training 
%): 
 

 2

1

1 N
i i iMSE t y

N     (2) 

 
Table 3 shows the results of the sensitivity analysis we 

performed on the parameters of the generic NN.  
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Table 3. Validation performance of a grid of NN architectures with: a) 1 or 2 hidden layers of neurons with hyperbolic 
tangent (tanh) activation functions, b) between 10 and 40 neurons in each hidden layer, and c) the proportion of training 
data varying between 70% and 90%. The optimal NN architecture is indicated by **. 

Hidden Layers Hidden Neurons Training % MSE R 
1 10 70 282.4 0.493 
1 10 80 275.3 0.509 
1 10 90 272.6 0.516 
1 20 70 268.9 0.524 
1 20 80 267.2 0.528 
1 20 90 263.5 0.536 
1 30 70 250.2 0.567 
1 30 80 249.1 0.569 
1 30 90 246.9 0.574 
1 40 70 261.8 0.541 
1 40 80 260.0 0.544 
1 40 90 258.8 0.547 
2 10 70 107.7 0.892 
2 10 80 101.6 0.906 
2 10 90 98.5 0.913 
2 20 70 94.8 0.922 
2 20 80 92.4 0.927 
2 20 90 90.6 0.931 
2 30 70 76.0 0.964 
2 30 80 74.8 0.967 

**2 **30 **90 **74.0 **0.969 
2 40 70 90.4 0.932 
2 40 80 88.9 0.935 
2 40 90 87.1 0.939 

 

For this grid of NNs and input-output data, the optimal 
architecture corresponds to a NN containing 2 hidden layers 
of 30 neurons when 90% of the data is used for training 
and 10% is used for validation. This reflects the fact that 
the relation between PM10 and the photochemistry is highly 
complex and nonlinear. The relative success of 3-layer NNs 
(i.e., containing 2 layers of hidden neurons) over 2-layer 
NNs supports the notion that deeper learning is required 
for this particular problem. This is also confirmed to some 
extent by the relatively large number of 30 neurons needed 
despite there being only a single output parameter and 7 
input parameters. Having established an appropriate NN 
architecture, we then proceeded to train NNs for each 
synoptic cluster as described in the next section. 
 
NN Training 

Since daily atmospheric circulation over the study region 
was classified into 8 categories, it was necessary to train a 
total of 8 NNs. For each NN, the training dataset comprises 
complete records of daily-averaged values of NO, NO2 and 
O3 together with the associated day of the week (DOW; an 
integer index running from 1 to 7 starting on Sunday), the 
day of the year (DOY; an index running from 1 to 365 or 
366 in the case of a leap year) and the sine and cosine of 
the DOY as inputs, together with the daily values of PM10 

as the output assembled from coincident measurements at 
the 10 station nodes: AGP, ALI, ELE, PAN, THR, KOR, 
LYK, MAR, OIN and PIR in the air quality monitoring 
network during the period 2001–2012 (inclusive). As such, 

each of the NN models has 7 input variables and 1 output 
variable. The indices of each synoptic category were then 
used to partition the data into 8 subsets. Each subset was 
further partitioned into data used for NN training and 
(“unseen”) data used for NN validation (the results of 
which are presented in the next section). For each synoptic 
category, a search was performed in each of the 12 years 
of the study period (2001–2012 inclusive) and 90% of the 
indices were stored for training while the remaining 10% 
of the indices were stored for validation. In total, 8 sets of 
training and validation indices were produced. For each 
category, the indices were then used to extract coincident 
chemical measurements together with their associated 
temporal variables. Fig. 4 shows the progression of training 
for the ‘zonal flow’ (Cluster 5) NN towards convergence at 
the horizontal asymptote for the “best” validation MSE after 
100 epochs of back-propagation learning using Bayesian 
regularization. At this point where the slope of the validation 
MSE approaches zero, the effective number of parameters 
used in the regularization has converged. Fig. 4 shows that 
a high level of correlation has been achieved between 
target measured values of PM10 and the NN outputs with a 
Pearson product-moment correlation coefficient, R = 0.944. 
Robust regression was performed using the method of Theil 
(1950) and Sen (1968). The training results and associated 
statistics for each of the 8 synoptically-clustered NNs 
(labelled “NN1” to “NN8”) are presented in Table 4. The 
variation of linear and nonlinear average error and goodness 
of fit statistics are also presented in Fig. 4.  
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Fig. 4. Upper Left: Training of the ‘zonal flow’ (Cluster 5) NN showing how the MSE varies with back-propagation 
iteration (epoch). This NN has 2 layers of 30 hidden neurons with tanh activation functions and is trained with Bayesian 
regularization with a goal for the back-propagation cost function set to 1/100th of the total variance of the targets. Upper 
Right: A high level of correlation has been achieved between target measured values of PM10 and the NN simulation 
outputs (Pearson product-moment correlation coefficient, R = 0.944). Lower Left: Linear and nonlinear average error 
statistics for the 8 NNs corresponding to the partitioning of the data by synoptic category. Lower Right: Linear and 
nonlinear goodness of fit statistics for each trained NN.  
 

Table 4. Statistics associated with training each of the 8 synoptically-clustered NNs (NN1 to NN8). In the table, N is the 
number of daily values assembled from coincident data drawn from the 10 station nodes and N(> 50) is the number of 
values which exceed the limit set by the EU Air Quality Directive (2008/EC/50). The proportion of the data which are in 
excess of this limit is also given as a percentage. R is the Pearson Product-Moment Correlation coefficient from the 
regression of NN outputs on measured values. All other statistical quantities are described in the last section. 

N R µO sO µP sP b MAE RMSE RMSEs RMSEu d1 d2 R2 
NN1 1688 0.45 48.3 32.4 48.4 14.3 0.0 19.3 28.9 23.8 13.0 0.42 0.54 0.75
NN2 1512 0.73 32.9 16.7 32.5 12.1 –0.4 8.5 11.5 8.9 8.5 0.61 0.83 0.90
NN3 1431 0.67 38.3 22.9 38.3 15.0 0.0 11.8 17.0 11.6 11.3 0.59 0.77 0.86
NN4 1791 0.70 27.9 15.1 27.9 10.3 0.0 8.0 10.8 7.2 7.4 0.59 0.80 0.88
NN5 907 0.94 46.6 27.4 46.4 25.2 –0.2 5.8 9.0 2.7 8.3 0.85 0.97 0.97
NN6 4851 0.75 42.4 22.7 42.3 16.8 0.0 10.7 15.0 9.5 11.2 0.64 0.84 0.90
NN7 333 0.82 42.7 21.1 42.5 16.7 –0.2 8.9 12.1 7.3 9.6 0.70 0.89 0.94
NN8 3508 0.65 37.1 18.1 37.1 11.6 0.0 9.7 13.7 9.9 8.9 0.55 0.76 0.89
Mean 2003 0.71 39.5 22.0 39.4 15.3 –0.1 10.3 14.8 10.1 9.8 0.62 0.80 0.89

St. Dev. (SD) 1468 0.14 6.9 5.7 6.9 4.7 0.2 4.0 6.2 6.1 1.9 0.12 0.12 0.06
Mean + 2SD 4938 1.00 53.3 33.5 53.2 24.6 0.2 18.4 27.3 22.3 13.5 0.87 1.00 1.00
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NN5, corresponding to the case of ‘zonal flow’ (Cluster 5), 
presents the lowest linear and nonlinear measure of average 
error (MAE, RMSE, RMSEs and RMSEu) and concurrently 
the highest values of the linear and nonlinear goodness of 
fit statistics (R, d1, d2, R2). In order to assess whether or 
not partitioning of the data into synoptic categories and 
training a NN for each category offers an advantage over not 
using synoptic clustering (i.e., that taking meteorology into 
account provides a computational benefit), we also trained an 
additional NN without clustering using exactly the same 
input-output vectors (i.e., using 90% of the data from each 
synoptic category and then accumulation of the input-output 
vectors over all clusters). In order to be able to directly 
compare this “unclustered” NN which we label “NNU” 
with the 8 synoptically-clustered NNs, we recombined the 
simulated outputs from NN1 to NN8 into a single matrix of 
input-output vectors which we label “NNC”. The statistics 
associated with NNC reflect the mean training performance 
over all 8 synoptically-clustered NNs. Table 5 shows the 
statistics associated with these two models. 

The statistics for the NNs presented in Table 5 are based 
on the largest available sample of coincident data (N = 
16021 daily input-output vectors). The training performance 
is reasonably good in both cases (e.g., the linear and 
nonlinear average error measures MAE, RMSE, RMSEs 
and RMSEu are in the range 10.06 to 18.04 µg m–3, and the 
linear and nonlinear goodness of fit statistics R, d1, d2 and 
R2 are in the range 0.56 to 0.88). Some slight improvement 
is apparent in the case of NNC suggesting that the use of 
synoptic clustering appears to offer some benefit. The 
simulation performance of the NNs is tested by feeding the 
trained NNs with unseen data (i.e. the 10% of the datasets 
not used during network learning). In the next section we 
evaluate the performance of the NN model by comparing 
simulated PM10 outputs against daily measurements from 
station nodes in the air quality monitoring network. 
 
RESULTS 
 

As a result of applying the methodology described in the 
previous section, a total of 9 NNs were trained (one for 
each of the 8 synoptic categories plus one without clustering). 
In each case, 90% of the dataset was used for training. In 
order to assess the simulation performance of the NNs, the 
remaining 10% of the dataset containing daily photochemical 
measurements: NO, NO2, O3 and associated temporal 
variables (DOW, DOY and the sine and cosine of DOY) 
coincident with PM10 measurements and synoptic categories 
at the station nodes: AGP, ALI, ELE, PAN, THR, KOR, 
LYK, MAR, OIN and PIR, was used. As for the NN 
training, cluster indices for synoptic categories were used 
to divide the data into 8 subsets (one for each synoptic 

category). The input vectors in each of the subsets were 
then fed to each of the 8 synoptically-categorized NNs to 
simulate daily PM10 values. The time series at each station 
node was then reconstructed from the simulated outputs 
for each synoptic category with reference to the associated 
cluster indices. Since coincident input-output vectors are 
used at every stage, simulation performance was assessed 
using the statistical difference measures described earlier. 
For the case of the NN trained without synoptic clustering 
(NNU), PM10 simulations and coincident measurements at 
each station node are directly compared without the need 
to perform time series reconstruction using cluster indices. In 
addition to the calculation of average error and goodness of 
fit statistics for time series at each station node, we have 
also flagged PM10 measurements that are in excess of the 
EU Air Quality Directive limit value of 50 µg m–3 so as to 
assess the performance of the NNs on routine values that 
are not outliers (in the sense that they exceed a limit value). In 
Table 6 we present statistics for simulated PM10 values 
obtained with the NN trained without synoptic clustering 
(NNU) for the data points at each station node. In Table 7 
we present analogous statistics for data points that are 
below the limit value. 

In Table 8 we present performance statistics associated 
with the reconstructed time series of PM10 simulations 
obtained from the output of the 8 synoptically-clustered 
trained NNs at each station node (NNC). Table 9 presents 
analogous statistics for data points that are below the limit 
value.  

In order to assess whether or not partitioning of the data 
into synoptic categories and training a NN for each category 
offers an advantage, we present the simulation results from 
the NN trained without clustering for data accumulated 
across all station nodes (“NNU”) with that resulting from 
simulation with the 8 synoptically-categorized NNs: NN1 
to NN8 (“NNC”). Table 10 shows the statistics associated 
with these two simulations.  

While comparable in performance, both NN models 
strongly improve on the results of the MLR model of PM10 
where the median R2 value across the 10 station nodes was 
found to be only 0.25 (see the entry for NO, NO2, O3 in 
Table 2). Table 11 shows that this improvement is systematic 
across all station nodes. 
 
DISCUSSION 
 

Comparison of NN estimates against measured values of 
PM10 across 10 station nodes in the air quality monitoring 
network of the GAA using photochemical inputs and 
associated temporal variables over the 2001–2012 (inclusive) 
study period, suggests that PM10 can be retrieved at the 
daily timescale with some confidence. This is true both for

 

Table 5. Statistics associated with training a NN without synoptic clustering (“NNU”) and by reconstructing the data from 
aggregation of the simulations from the 8 synoptically-clustered NNs (“NNC”).  

N R µO sO µP sP b MAE RMSE RMSEs RMSEu d1 d2 R2 
NNU 16021 0.62 39.40 22.93 39.22 14.18 –0.19 12.02 18.04 12.47 11.32 0.56 0.73 0.84
NNC 16021 0.71 39.40 22.93 39.16 16.08 –0.05 10.66 16.02 10.06 11.39 0.62 0.81 0.88
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Table 6. Statistics associated with PM10 simulations obtained from NNU at each station node compared with measured 
values. 

N R µO sO µP sP b MAE RMSE RMSEs RMSEu d1 d2 R2 
AGP 304 0.53 32.45 19.18 33.54 9.13 1.09 11.40 16.33 13.39 7.81 0.44 0.62 0.81
ALI 26 0.69 29.42 9.96 31.56 7.45 2.13 5.84 7.37 5.50 5.27 0.58 0.79 0.94
ELE 27 0.54 42.41 15.72 43.03 8.67 0.63 11.22 12.98 11.48 7.22 0.43 0.66 0.92
PAN 49 0.77 25.49 11.46 30.75 6.94 5.26 7.41 9.11 7.67 4.40 0.53 0.77 0.89
THR 329 0.39 30.06 19.93 29.42 7.29 –0.64 10.27 18.31 14.83 7.08 0.42 0.44 0.74
KOR 134 0.15 30.22 26.03 30.09 5.25 –0.13 12.10 25.68 21.92 6.10 0.28 0.17 0.58
LYK 346 0.64 49.23 24.17 43.45 13.28 –5.78 13.05 19.54 15.80 10.31 0.56 0.71 0.87
MAR 304 0.57 46.99 26.28 44.48 17.20 –2.51 13.66 21.77 14.81 14.25 0.58 0.71 0.84
OIN 60 0.40 41.48 23.28 36.99 9.19 –4.49 14.30 21.66 21.05 8.46 0.40 0.49 0.79
PIR 197 0.55 45.86 18.50 54.32 13.92 8.46 14.56 18.02 14.37 11.81 0.43 0.69 0.87

Mean 178 0.52 37.36 19.45 37.76 9.83 0.40 11.38 17.08 14.08 8.27 0.47 0.61 0.83
SD 134 0.18 8.70 5.73 8.26 3.75 4.27 2.89 5.78 5.12 3.05 0.10 0.19 0.10

Mean + 2SD 446 0.88 54.76 30.92 54.28 17.33 8.94 17.15 28.63 24.33 14.38 0.66 0.98 1.00

 

Table 7. Statistics associated with PM10 simulations obtained from NNU compared with measurements which are below 
the EU Air Quality Directive limit value of 50 µgm–3. 

N (PM10 < 50) R µO sO µP sP b MAE RMSE RMSEs RMSEu d1 d2 R2

AGP 258 0.47 25.98 9.40 31.94 7.21 5.95 8.67 10.57 8.32 6.36 0.42 0.62 0.85
ALI 24 0.69 27.67 8.12 30.89 7.19 3.23 5.41 6.77 4.90 5.15 0.58 0.78 0.94
ELE 18 0.54 33.17 9.32 40.55 7.73 7.38 9.59 10.94 9.21 6.39 0.41 0.64 0.90
PAN 47 0.78 24.04 8.98 30.31 6.72 6.26 6.94 8.35 6.96 4.14 0.54 0.76 0.89
THR 299 0.47 25.72 9.61 28.70 6.60 2.98 7.61 9.22 6.90 5.83 0.43 0.64 0.89
KOR 125 0.40 25.60 9.46 30.07 5.17 4.47 8.36 9.82 8.49 4.76 0.37 0.56 0.87
LYK 207 0.47 33.99 9.19 37.41 8.94 3.43 7.93 9.90 5.47 7.94 0.48 0.66 0.92
MAR 201 0.25 32.70 10.41 37.78 11.15 5.08 9.68 14.10 7.26 10.92 0.44 0.54 0.83
OIN 44 0.18 31.59 9.33 35.32 7.67 3.73 9.65 11.47 8.77 7.48 0.35 0.49 0.88
PIR 128 0.15 35.33 8.38 50.08 9.77 14.75 15.66 18.91 15.54 9.65 0.28 0.40 0.73

Mean 135 0.44 29.58 9.22 35.30 7.82 5.73 8.95 11.00 8.18 6.86 0.43 0.61 0.87
SD 102 0.21 4.18 0.64 6.52 1.72 3.49 2.72 3.39 2.94 2.16 0.09 0.12 0.06

Mean + 2SD 339 0.85 37.93 10.49 48.35 11.26 12.70 14.38 17.78 14.06 11.19 0.61 0.85 0.99

 

Table 8. Statistics associated with the reconstructed time series of PM10 simulations obtained from the output of the 8 
synoptically-clustered trained NNs at each station node (NNC) compared with measured values. 

N R µO sO µP sP b MAE RMSE RMSEs RMSEu d1 d2 R2 
AGP 304 0.58 32.45 19.18 33.54 11.83 1.09 10.50 15.60 10.17 9.83 0.53 0.71 0.83
ALI 26 0.65 29.42 9.96 31.43 8.67 2.01 6.53 7.96 5.21 6.68 0.58 0.78 0.93
ELE 27 0.73 42.41 15.72 43.62 11.67 1.21 9.13 10.65 7.18 7.86 0.59 0.83 0.94
PAN 49 0.54 25.49 11.46 29.88 9.12 4.39 7.33 10.93 6.65 7.71 0.54 0.70 0.85
THR 329 0.50 30.06 19.93 29.67 9.68 –0.39 9.77 17.27 11.68 9.06 0.50 0.59 0.77
KOR 134 0.42 30.22 26.03 30.05 8.63 –0.17 11.21 23.66 18.06 8.91 0.41 0.43 0.65
LYK 346 0.69 49.23 24.17 43.22 15.46 –6.02 12.10 18.43 13.78 11.20 0.62 0.77 0.89
MAR 304 0.68 46.99 26.28 44.38 18.43 –2.61 12.58 19.49 12.35 13.78 0.63 0.79 0.87
OIN 60 0.54 41.48 23.28 38.87 13.78 –2.61 12.97 19.57 13.18 11.81 0.52 0.67 0.83
PIR 197 0.67 45.86 18.50 51.34 16.00 5.48 11.62 15.17 9.85 11.84 0.56 0.79 0.91

Mean 178 0.60 37.36 19.45 37.60 12.33 0.24 10.37 15.87 10.81 9.87 0.55 0.71 0.85
SD 134 0.10 8.70 5.73 7.73 3.46 3.42 2.18 4.84 3.85 2.24 0.06 0.12 0.09

Mean + 2SD 446 0.80 54.76 30.92 53.07 19.24 7.08 14.74 25.55 18.51 14.35 0.68 0.94 1.00

 

the case of an NN trained on the 90% of the dataset and 
also for time series of PM10 reconstructed from 8 NNs 
trained on synoptically-clustered data - with some small 
improvement with regards to the overall RMSE with the 
latter. Fig. 5 shows the size of linear and nonlinear average 

error statistics across the station nodes obtained from NNs 
trained with and without synoptic clustering.  

The largest average error corresponds to the NN trained 
without synoptic clustering whereby at the KOR station 
node the RMSE = 25.68 µg m–3 (associated with 134 pairs of 
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Table 9. Statistics associated with the reconstructed time series of PM10 simulations obtained from the output of the 8 
synoptically-clustered trained NNs at each station node (NNC) compared with measurements which are below the EU Air 
Quality Directive limit value of 50 µgm–3. 

N (PM10 < 50) R µO sO µP sP b MAE RMSE RMSEs RMSEu d1 d2 R2

AGP 258 0.53 25.98 9.40 31.15 9.33 5.17 8.22 10.43 7.94 7.97 0.49 0.68 0.86
ALI 24 0.68 27.67 8.12 30.79 8.36 3.13 6.12 7.14 5.41 6.25 0.57 0.78 0.94
ELE 18 0.53 33.17 9.32 38.68 10.38 5.51 9.08 10.86 4.00 9.03 0.46 0.67 0.90
PAN 47 0.56 24.04 8.98 29.59 9.13 5.55 6.67 10.08 5.55 7.60 0.56 0.70 0.85
THR 299 0.53 25.72 9.61 28.63 8.87 2.91 7.41 9.41 4.95 7.69 0.50 0.71 0.88
KOR 125 0.45 25.60 9.46 29.32 7.80 3.72 7.97 9.83 7.00 6.96 0.45 0.65 0.87
LYK 207 0.52 33.99 9.19 35.68 9.62 1.69 7.37 9.35 4.45 8.23 0.52 0.71 0.93
MAR 201 0.38 32.70 10.41 36.49 12.02 3.80 9.21 13.10 4.41 12.33 0.48 0.62 0.85
OIN 44 0.43 31.59 9.33 35.42 12.78 3.83 9.87 12.63 4.25 11.69 0.47 0.61 0.85
PIR 128 0.39 35.33 8.38 45.20 11.15 9.87 11.81 14.75 9.58 10.26 0.38 0.54 0.83

Mean 135 0.50 29.58 9.22 34.10 9.94 4.52 8.37 10.76 5.75 8.80 0.49 0.67 0.88
SD 102 0.09 4.18 0.64 5.24 1.61 2.24 1.68 2.19 1.85 2.02 0.06 0.07 0.04

Mean + 2SD 339 0.68 37.93 10.49 44.57 13.17 9.00 11.73 15.14 9.45 12.83 0.60 0.80 0.95

 

Table 10. Statistics associated with simulation across the 10 station nodes with the NN trained without synoptic clustering 
(“NNU”) together with statistics associated with reconstructing and aggregating outputs across the 10 station nodes using 
the 8 synoptically-clustered NNs (“NNC”).  

N R µO sO µP sP b MAE RMSE RMSEs RMSEu d1 d2 R2 
NNU 1776 0.58 39.31 23.54 38.78 14.30 –0.53 12.21 19.25 13.88 11.87 0.56 0.70 0.82
NNC 1776 0.66 39.31 23.54 38.48 15.71 –0.83 11.13 17.74 9.46 12.41 0.61 0.77 0.85

 

Table 11. Comparison of the coefficient of determination (R2) for the multiple lnear regression (MLR) model of PM10 
using the photochemical input triplet (NO,NO2,O3) and the neural network models without synoptic clustering (NNU) and 
with synoptic clustering (NNC) for each of the 10 stations providing coincident measurement data. For the MLR model the 
average value of R2 across the network of stations is reported as the median of the values while for the NNU and NNC, the 
mean value is reported. 

R2 values AGP ALI ELE PAN THR KOR LYK MAR OIN PIR Average
MLR 0.22 0.30 0.25 0.24 0.16 0.07 0.41 0.35 0.05 0.26 0.25 
NNU 0.81 0.94 0.92 0.89 0.74 0.58 0.87 0.84 0.79 0.87 0.83 
NNC 0.83 0.93 0.94 0.85 0.77 0.65 0.89 0.87 0.83 0.91 0.85 

 

NN estimates and measured daily values). For the 125 data 
points of this sample where PM10 < 50 µg m–3 (i.e., below the 
EU Air Quality Directive limit value) the corresponding 
RMSE falls to 9.82 µg m–3. For the same input data fed to 
synoptically-clustered NNs, RMSE = 23.66 µg m–3 for the 
134 NN estimates and RMSE = 9.83 µg m–3 for the 125 data 
points of this sample where PM10 < 50 µg m–3. A similar 
trend is observed at all station nodes and suggests that the 
NN model is capturing the bulk of routine values very well 
(to within ≈ 11 µg m–3). Outlier values (i.e., measurements 
which are in excess of the limit value) are less well modeled 
by the NNs. This effect translates into a modulation of the 
goodness of fit at station nodes such as KOR and OIN 
where measurements are strongly in excess of the limit 
value of 50 µg m–3 as shown in the lower panels of Fig. 5. 
To place this effect in context, at the KOR station node, 
while only 9 out of 134 data points (i.e., 6.7%) are in 
excess of the EU Air Quality Directive limit value, they 
have a strong impact on the goodness of fit measures when 
comparing the whole simulation sample (“All”) with the 
statistics for routine values where PM10 < 50 µg m–3. At the 

LYK station node, where some 40.2% of the simulation data 
exceed the limit value, the performance of the NNs trained 
both with and without synoptic clustering is robust for the 
subset of routine values (below the limit value) as shown 
in Fig. 6. This gives additional credence to the notion that 
the NNs perform reliably well for routine values.  

To sum up our findings in this section, NN models with 
synoptic clustering achieved an average root mean square 
error (RMSE) ≈ 16 µg m–3 across the station nodes with an 
average index of agreement (IA) of 0.71 (somewhat better 
than the control network whose performance statistics 
were RMSE ≈ 17 µg m–3 and IA = 0.61 respectively). For 
routine measurements below the EU Air Quality Directive 
limit value of 50 µg m–3, the average error is as low as 
RMSE ≈ 11 µg m–3 across the station nodes. 
 
CONCLUSIONS 
 

The NN modeling approach developed and tested here 
for estimating daily PM10 concentrations from photochemical 
measurements can be readily applied to model other PM 
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Fig. 5. Upper Panels: Linear and nonlinear average error statistics associated with PM10 estimates compared with 
measured values for the NN trained without synoptic clustering values. The average error statistics for measured values of 
PM10 < 50 µg m–3 is shown at right. Middle Panels: Error statistics for the output produced by training a separate NN for 
each data partition corresponding to a different synoptic cluster. The average error statistics for measured values of PM10 < 
50 µg m–3 is shown at right. Lower Panels: Linear and nonlinear goodness of fit statistics for the output produced from the 
8 synoptic cluster NNs. The goodness of fit statistics for measured values of PM10 < 50 µg m–3 is shown at right. 

 

concentrations such as PM2.5 and/or PM1, and can help 
increase the spatiotemporal coverage and representivity of 
existing air quality monitoring networks enabling them to 
contribute more data to urban, suburban or interurban 
assessments of PM. The estimated daily values of PM10 
have average errors small enough (≈ 11 µg m–3) to make 
such models appear to be operationally feasible. Both NN 
models with and without synoptic clustering, were found 
to greatly outperform their linear MLR model counterparts 
across all sites of the air quality monitoring network. MLR 
was found to be extremely helpful in helping determine the 
most relevant chemical species to be included in the model 

design and, despite the complexity of the NN architecture 
needed to achieve deep learning (two layers of 30 hidden 
neurons), Bayesian regularization was found to be 
instrumental in helping stabilize network learning, avoid 
overfitting and to maximize the generalization potential of 
the trained NN models. 

A major advantage of the methodology described in this 
paper is that photochemical data (NO, NO2 and O3), unlike 
PM measurement, is already a feature of most monitoring 
networks. Furthermore, daily analysis of atmospheric 
circulation and synoptic pattern categorization is also 
something readily available and easy to obtain from daily
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Fig. 6. Upper: NN estimates of PM10 (cyan) at the LYK station node obtained by the NN trained without synoptic 
clustering and corresponding measurements (dark grey) connected by black lines when PM10 < 50 µg m–3 and by red lines 
when PM10 ≥ 50 µg m–3. The right hand panel shows regression of NN estimates on measured values for the case of PM10 
≥ 50 µg m–3 (red) and PM10 < 50 µg m–3 (black). Lower: As for the upper panels but with NN estimates of PM10 obtained 
by NNs trained with synoptic clustering. 

 

meteorological bulletins. It is envisaged that NN models 
like the ones developed here can be used: i) to ‘fill-in’ gaps 
in PM10 time series were only coincident NO, NO2, and O3 
measurements are available, and ii) to help extend existing 
time series of PM10 (and potentially PM2.5 and PM1 from 
construction of analogous models) for the development of PM 
nowcast (1-day ahead forecast) models, and the production of 
(interpolated) air quality maps of study regions. This 
spatiotemporal approach therefore has the potential to 
increase the effectiveness and reach of existing air quality 
monitoring networks that can support the legislation of 
environmental policy for engendering behavioural change 
to reduce air pollution levels.  
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