Ochoa-Fernandez, Rocio, Abel, Nikolaj B., Wieland, Franz-Georg, Schlegel, Jenia, Koch, Leonie A., Miller, Ben ORCID: https://orcid.org/0000-0003-0882-033X, Engesser, Raphael, Giuriani, Giovanni, Brandl, Simon M., Timmer, Jens, Weber, Wilfried, Ott, Thomas, Simon, Rüdiger and Zurbriggen, Matias D. (2020) Optogenetic control of gene expression in plants in the presence of ambient white light. Nature Methods, 17 (7). 717–725. ISSN 1548-7091
Preview |
PDF (Accepted_Manuscript)
- Accepted Version
Download (1MB) | Preview |
Abstract
Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR–Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Biological Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Molecular Microbiology Faculty of Science > Research Groups > Plant Sciences |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 01 Jul 2020 00:00 |
Last Modified: | 22 Oct 2022 06:23 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/75840 |
DOI: | 10.1038/s41592-020-0868-y |
Downloads
Downloads per month over past year
Actions (login required)
View Item |