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18 ABSTRACT 
 

19 Optogenetics, the genetic approach of controlling cellular processes with light, is 
 

20 revolutionizing biological signalling and metabolic studies. It provides unmatched 
 

21 spatiotemporal, quantitative and reversible control, overcoming limitations of 
 

22 chemically-inducible systems. However, optogenetics severely lags in plant research 
 

23 because ambient light required for growth leads to undesired system activation. We 
 

24 solved this issue engineering PULSE (Plant Usable Light-Switch Elements), the first 
 

25 optogenetic tool for reversibly controlling gene expression in plants under ambient 
 

26 light. PULSE combines a blue light-regulated repressor with a red light-inducible 
 

27 switch. Gene expression is only activated under red light and remains inactive under 
 

28 white light/darkness. Supported by a quantitative mathematical model we 
 

29 characterized PULSE in protoplasts achieving high induction rates, and combined it 
 

30 with CRISPR/Cas9-based technologies to target synthetic signalling and 
 

31 developmental pathways. We applied PULSE to control immune responses in plant 
 

32 leaves and generated Arabidopsis transgenic plants. PULSE opens broad 
 

33 experimental avenues for plant research and biotechnology. 

 
34 
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35 INTRODUCTION 
 

36 The reversible and orthogonal control of cellular processes with high spatiotemporal 
 

37 resolution is key for quantitatively understanding the dynamics of biological signalling 
 

38 networks as well as for programming desired phenotypes. The optimal stimulus for 
 

39 such cellular control is light as it can be applied with unmatched spatiotemporal 
 

40 precision in a quantitative manner, with minimized toxicity and invasiveness. 
 

41 Accordingly, optogenetics, the control of cellular events by using genetically 
 

42 encoded, light-responsive switches is opening revolutionary avenues in mammalian 
 

43 systems. A non-limiting list of successfully manipulated and regulated cellular and 
 

44 physiological processes with optogenetic switches includes neuromodulation, gene 

 
45 expression, epigenetics, protein and organellar activity, and subcellular localization1– 

 
46 7. 

 

47 While similar approaches to address important biological questions are needed in 
 

48 plant research, the use of optogenetics to answer them is limited by the intrinsic need 
 

49 of plants for broad-spectrum light which would erroneously activate the engineered 
 

50 light-responsive switches. We have recently developed and successfully 
 

51 implemented the first two optogenetic systems for the control of gene expression in 
 

52 plant cells. The systems are regulated by red and green light and proved useful for 
 

53 the quantitative manipulation of hormone signalling pathways and recombinant 

 
54 protein expression control8,9. However, due to the spectral compatibility limitations 

 

55 described above or the need for co-factors difficult to administer to whole plants, 
 

56 these tools could only be applied in transiently transformed plant cells such as 
 

57 mesophyll protoplasts from Nicotiana tabacum or Arabidopsis thaliana, and the moss 
 

58 Physcomitrella  patens  which  can  be  kept  in  the  dark  prior  to  the optogenetic 

 
59 experiment8–10. Despite their utility for transient signalling studies in cell culture, it is 

 

60 highly desirable to have an optogenetic tool functional in whole plants and being 
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61 insensitive to broad-spectrum white light to harness the full potential of optogenetics 
 

62 in the plant kingdom. 
 

63 Towards this goal, we set here to develop the first optogenetic system for the control 
 

64 of gene expression in plants that is silent under white light and can be activated with 
 

65 monochromatic red light. The system, termed PULSE (Plant Usable Light-Switch 
 

66 Elements), comprises two engineered photoreceptors exerting a combined activity 
 

67 over the regulation of transcription initiation: one actively represses gene expression 
 

68 under blue light (BOff, Blue Light-repression) engineered from the EL222 

 
69 photoreceptor11, and the second one activates gene expression with red light (ROn, 

70 Red Light-activation) based on a Phytochrome B (PhyB) - PIF6 optoswitch8,10 (Fig. 
 

71 1). 
 

72 We first engineered and characterized PULSE in Arabidopsis thaliana protoplasts. 
 

73 PULSE provides quantitative and spatiotemporal reversible control over gene 
 

74 expression, achieving high induction rates (up to ca. 400-fold) while being Off under 
 

75 white light or in the dark. We developed a mathematical model to quantitatively 
 

76 characterize the dynamic behaviour of the system and guide designing experimental 
 

77 setups. We combined it with a plant transcription factor (TF) or a CRISPR/Cas9- 
 

78 derived gene activator and showed its functionality for the light-controlled activation 
 

79 of both Arabidopsis and orthologous promoters. Furthermore, we applied PULSE to 
 

80 engineer light-inducible immunity in planta using Nicotiana benthamiana leaves as 
 

81 model system, and tested its functionality in whole Arabidopsis transgenic plants. 
 

82 These results demonstrate the wide applicability of PULSE, opening up novel 
 

83 perspectives for the targeted spatiotemporal and quantitative study and control of 
 

84 plant signalling, genetic and metabolic networks as well as its implementation for 
 

85 biotechnological approaches. 

 
86 
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87 RESULTS 

 
88 

 

89 Design, implementation, and test of the PULSE system in plant cells 
 

90 PULSE is an integrated optogenetic molecular device, consisting of two components, 
 

91 a module providing activation of gene expression under red light (ROn) and a second 

 
92 one ensuring  effective  transcriptional repression  under  blue  light (BOff) (Fig. 1).  The 

 

93 rationale behind this new conceptual and experimental approach is that the 
 

94 combination of both switches will yield a system that is inactive in ambient growth 
 

95 conditions (light and darkness) and only active upon irradiation with red light. This 
 

96 enables full applicability in plants growing under standard light conditions. 
 

97 We first constructed a blue light-regulated gene repression switch BOff based on the 

 
98 photoreceptor EL222 from the bacterium Erythrobacter litoralis11 which has a Light- 

 

99 Oxygen-Voltage (LOV) dependent motif and an Helix-Turn-Helix (HTH) domain. 

 
100 Upon blue light it binds as a dimer to the target DNA sequence C12012. BOff thus 

 

101 comprises (Fig. 2a): i) the constitutively expressed EL222 fused to a transcriptional 
 

102 repressor domain (REP), and ii) a reporter module driving the expression of a 
 

103 reporter gene (e.g. Firefly luciferase, FLuc) under the control of a synthetic tripartite 
 

104 promoter. The promoter comprises a quintuple-repeat target sequence for EL222, 
 

105 termed (C120)5, flanked by the enhancer sequence of the CaMV35S promoter and 
 

106 the minimal domain of the constitutive promoter hCMV. 
 

107 We evaluated three versions of the blue light-repressor module by fusing either of 
 

108 three different known transrepressor domains to the N-terminus of EL222, one from 

 
109 the human Krüppel Associated Box (KRAB)13,14 protein, and two from Arabidopsis, 

 
110 namely the B3 repression domain (BRD)15 and the EAR repression domain (SRDX)15 

 

111 (Fig. 2a). The functionality of the BOff optoswitches was assayed by transient co- 
 

112 transformation with the reporter construct into Arabidopsis protoplasts. Constitutively 
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113 expressed Renilla luciferase, RLuc, was included for normalization. The cells were 
 

114 illuminated for 18 h at different light intensities of blue light (0, 0.25, 0.5, 1, 5 and 10 

 
115 µmol m-2 s-1), and FLuc/RLuc activity was quantified (Fig. 2b). These blue light 

 

116 intensities had no negative effect on protoplast performance. All three versions of the 
 

117 repressor modules were functional although with different efficiencies, yielding a 

 
118 range of repression levels (SRDX, 92%; BRD, 84%; and KRAB, 53%; at 10 µmol m-2 

 
119 s-1 blue light). Based on the highest repression level and dynamic range achieved, 

 

120 we decided to use SRDX-EL222 as a trans-repressor module for all subsequent 
 

121 experiments. 
 

122 To allow gene induction with PULSE, we then combined the novel blue light- 
 

123 repressible (BOff) module with our previously developed PhyB – PIF6 red light- 

 
124 inducible split TF switch (ROn)8,10 (Fig. 3a,b). PULSE thus integrates: i) a 

 

125 constitutively expressed red light-activation module composed of PhyB-VP16 and E- 
 

126 PIF6, ii) a constitutively expressed blue light-repressor module SRDX-EL222, and iii) 
 

127 a synthetic target promoter, POpto, integrating the binding domains for both switches, 

 
128 namely (C120)5 and (etr)8, upstream of a hCMV minimal promoter sequence driving 

 

129 the expression of a gene of interest. In the presence of blue or white light (a 
 

130 combination of blue, green, red and far-red wavelengths as present in ambient light) 
 

131 both photoreceptors PhyB and EL222 bind to POpto. The net result of the recruitment 
 

132 of the transcriptional activator and repressor near to the minimal promoter sets the 
 

133 system to the Off state. This also applies to darkness and far red light conditions, as 
 

134 the red light-switch is rendered inactive under these wavelengths. Under any other 
 

135 illumination condition lacking the blue light component, SRDX-EL222 is unable to 
 

136 bind POpto and thus to repress transcription. The system is, then, exclusively in the 
 

137 On state upon monochromatic red light treatment when the interaction between PhyB 
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138 and PIF6 leads to the recruitment of the activation domain to the minimal promoter 
 

139 inducing gene expression (Fig. 3a). 
 

140 The PULSE system controlling FLuc expression was first introduced and tested in 
 

141 isolated Arabidopsis protoplasts (Fig. 3c). The plasmids coding for the Ron switch 

 
142 were co-transformed either with or without BOff, and the protoplasts were incubated 

 

143 for 18 h under either red, blue, white or far-red light (as described in Methods). In the 
 

144 absence of the repressor module (equivalent to ROn), efficient activation of PhyB was 
 

145 observed by red light but also under blue and white, as UV and blue light (300 - 460 

 
146 nm) also activate PhyB16,17. Upon addition of the BOff repressor module (PULSE 

 

147 system) we observed induction under red light treatment only, showing a high 
 

148 dynamic range, with up to 396.5-fold induction rates relative to darkness, and a very 
 

149  

 
150  

low basal level of expression in blue and white light (1.7- and 1.6-fold, respectively). 

 

151 Development and application of a quantitative model to describe and predict 
 

152 the PULSE activity 
 

153 In order to quantitatively understand the dynamics and functional characteristics of 
 

154 PULSE and to guide the experimental design of future applications concerning 
 

155 optimal light quality, intensity, and duration, we developed an ordinary differential 
 

156 equation (ODE)-based quantitative mathematical model. The Supplementary 
 

157 Information provides a detailed derivation of the model equations, error 
 

158 measurements, system parameters and uncertainty analysis performed. To 
 

159 parameterize the model, On-Off kinetic studies of the PULSE system were performed 
 

160 in protoplasts by monitoring FLuc protein and mRNA levels (Extended Data Fig. 
 

161 1a,b). The experiments demonstrate the reversibility of the system. In order to further 
 

162 characterize thresholds of time and light intensity for protein production, end point 
 

163 measurements and dose-response experiments were performed (Supplementary 
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164 Fig. 1a,b,c). Next, we used the parameterized model to predict the experimental 
 

165 gene expression outcomes of the system as a function of different light intensities, 
 

166 wavelengths and illumination times. Heat maps were generated based on simulations 
 

167 of the dynamic behaviour of PULSE (Extended Data Fig. 1c, Supplementary Fig. 
 

168 2) which will aid in the experimental design by guiding the targeted selection of 
 

169 conditions to obtain a given expression level of interest. To illustrate this, PULSE was 
 

170 tested for combinations of red light intensities and illumination durations selected 
 

171 from the heatmap. A strong correspondence between predicted and experimentally 
 

172 determined activities was observed (Extended Data Fig. 1c,d). This indicates the 
 

173 applicability of the model to determine the experimental conditions needed to achieve 
 

174  

 
175  

a tight control over the levels of gene expression with PULSE. 

 

176 PULSE-controlled expression of CRISPR/Cas9-derived gene activator and plant 
 

177 TFs to regulate orthologous and plant promoters in Arabidopsis protoplasts 
 

178 We next set out to customize PULSE to achieve quantitative and temporally resolved 
 

179 control over the expression of genes from any given promoter of interest, be it 
 

180 orthologous, synthetic or endogenous (downstream activation). For this we devised 
 

181 two approaches applying PULSE: i) to induce the synthesis of a CRISPR/Cas9- 
 

182 derived gene activator, or ii) to induce expression of an endogenous TF. These 
 

183 expressed transcriptional activators, in turn, activate expression from target 
 

184 orthologous (Fig. 4a,b) or Arabidopsis promoters (Fig. 4c-f). 
 

185 To achieve optogenetic and customizable control of potentially any target promoter, 
 

186 PULSE was set to control expression of a nuclease-deficient Streptococcus 

 
187 pyogenes Cas9 protein fused to a strong activation domain (termed dCas9TV)18,19. In 

 

188 a first proof of principle application, PULSE-induced dCas9-TV was used to drive 
 

189 expression from an orthologous promoter, the Solanum lycopersicum dihydroflavonol 
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190 4-reductase promoter (PSlDFR), using FLuc as a quantitative readout in Arabidopsis 
 

191 protoplasts (Fig. 4a). To target the promoter, a gRNA against the -150 bp region 

 
192 relative to the transcription start site (TSS) of PSlDFR was used19. PULSE-controlled 

 

193 dCas9-TV led to activation of the promoter only upon red illumination, achieving 24.5- 
 

194 and 40.0-fold induction rate compared to blue light and dark treatments, respectively 
 

195 (Fig. 4b). Constitutive expression of dCas9-TV served as a positive control yielding 
 

196 the maximum activation capacity of PSlDFR, 105.1-fold induction relative to the 
 

197 configuration without dCas9-TV (Supplementary Fig. 3a). In a second set up, 
 

198 optogenetically-induced dCas9-TV targeted the promoter of the Arabidopsis gene 
 

199 APETALA1 (PAtAP1) which includes the 5’UTR and 2,781 bp upstream of the TSS 

 
200 fused to the reporter FLuc (PAtAP1-FLuc) in a plasmid. A gRNA was designed to target 

 
201 the -100 bp region relative to the TSS of PAtAP1 (Fig. 4c). Red light induction of 

 
202 dCas9-TV yielded 17.9- and 14.1-fold FLuc induction rates from the PAtAP1-FLuc 

 

203 construct compared to blue and dark illumination (Fig. 4e). Constitutive expression of 
 

204 dCas9-TV yielded a 28.6-fold induction relative to the configuration without dCas9-TV 
 

205 (Supplementary Fig. 3b). 
 

206 We next configured PULSE to drive the expression of the Arabidopsis TF LEAFY 

 
207 (LFY) that is known to bind PAtAP1 and promote the expression of AP120. LFY and 

 

208 AP1 are involved in Arabidopsis flowering and both are expressed in the floral 
 

209 primordia. LFY was fused to the transactivator VP16 and RLuc using a self-cleaving 
 

210 2A sequence, which yields equimolar amounts of both proteins from a single 

 
211 transcript21 (POpto-LFY-VP16-2A-RLuc). RLuc allows the indirect quantification of the 

 

212 amount of LFY protein synthesized (Fig. 4d). The PULSE plasmids were co- 
 

213 transformed in Arabidopsis protoplasts either with or without the optogenetically 
 

214 inducible LFY, and a PAtAP1-FLuc target plasmid. RLuc values indicate expression of 
 

215 LFY-VP16 upon red light treatment, while only basal levels were obtained upon blue 
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216 light or dark treatment (17.5- and 26.6-fold induction, respectively). The red light- 
 

217 induced expression of LFY-VP16 led to activation of PAtAP1 and, therefore, FLuc 
 

218 expression achieving 31.4- and 7.4-fold induction rates compared to blue and 
 

219  

 
220  

darkness conditions, respectively (Fig. 4f, controls in Supplementary Fig. 3c). 

 

221 In planta optogenetic control of gene expression with PULSE 
 

222 We next set to evaluate the functionality of PULSE in plants. For this, a new set of 
 

223 vectors was engineered for transformation via Agrobacterium tumefaciens with all 
 

224 necessary components in binary plasmids. The vectors comprise a reporter gene 
 

225 under the control of PULSE (POpto), PULSE expressed under a constitutive promoter 

 
226 (either PCaMV35S or PAtUbi10), and optionally, a constitutively expressed reporter gene 

 

227 as a normalization element and a plant selection cassette (full description of vectors 
 

228 in Supplementary Table 1). 
 

229 N. benthamiana leaves were transiently transformed with a construct having PULSE, 
 

230 a fluorescent protein gene as a reporter (Venus fused to histone H2B for nuclear 
 

231 localization, POpto-Venus-H2B) and constitutively expressed Cerulean fused to a 
 

232 nuclear localization sequence (NLS) as a normalization element. The plants showed 
 

233 an increase in nuclear Venus/Cerulean fluorescence ratio over time when treated 
 

234 with red light, reaching 28.7-fold induction after 9 h and keeping background levels in 
 

235 blue, dark and white light, demonstrating activation of the system in planta (Fig. 5a,b 

 
236 and Supplementary Fig. 4). Additionally, PULSE control over a -glucuronidase 

 

237  

 
238  

gene (Popto-GUS) is shown in Supplementary Fig. 5. 

 

239 In planta optogenetic induction of immunity and conditional subcellular 
 

240 fluorescent targeting of receptors 
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241 In plants, signal integration of extracellular stimuli is predominantly mediated by 
 

242 membrane-resident receptor and transport complexes. To mechanistically 
 

243 understand their function, we require non-invasive inducible systems that allow 
 

244 transcriptional induction or complex formation with high temporal precision in order to 
 

245 reconstitute these functional entities in homologous as well as heterologous systems. 
 

246 To test this, we asked whether PULSE allows the generation of immune-competent 
 

247 leaf epidermal cells by introducing a heterologous pattern recognition receptor. 
 

248 In Arabidopsis, the recognition of the bacterial microbe-associated molecular pattern 
 

249 (MAMP) elf18 by the plant innate immune EF-Tu Receptor (EFR) results in a fast and 

 
250 transient   increase   in   cellular   reactive   oxygen   species   (ROS)22.   By   contrast, 

 

251 Solanaceae species such as N. benthamiana are devoid of EFR and therefore 
 

252 unable to perceive the elf18 peptide. However, genetic transformation of N. 
 

253 bethamiana and S. lycopersicum with AtEFR allows these plants to recognize elf18 
 

254 and confers increased resistance against phytopathogens such as Ralstonia 

 
255 solanacearum22,23. To achieve optogenetically controlled induction of immunity we 

 

256 expressed an EFR-GFP fusion protein under the control of PULSE (POpto-EFR-GFP) 
 

257 in N. benthamiana leaf epidermal cells (Fig. 6a). Red light treatment of leaves for 16 
 

258 h resulted in a clear GFP signal at the cell periphery indicating that EFR-GFP was 
 

259 successfully localized to the plasma membrane (Supplementary Fig. 6). To test 
 

260 whether optogenetically controlled EFR provides susceptibility of these cells towards 

 
261 elf18, we applied 1 M of the elf18 ligand. Indeed, a strong and transient production 

 

262 of ROS was observed ca. 10 min after elf18 application in leaves that have been red 
 

263 light-treated (red filled circles; Fig. 6b). Quantitative assays showed around 10-fold 
 

264 lower ROS burst triggered in white light-grown plants (black filled circles; Fig. 6b), 
 

265 demonstrating light-repression by PULSE under ambient light conditions. No 
 

266 responses were found in untransformed tissue and leaves expressing EFR, but 
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267 incubated in the absence of elf18. It should be noted that MAMP-triggered ROS 
 

268 production also relies on a self-amplifying mechanism. ROS spread to neighbouring 
 

269 cells where they induce calcium fluxes leading to the activation of the ROS-producing 

 
270 protein respiratory burst oxidase homolog protein D (RBOHD)24,25. Thus, ROS will be 

 

271 detected even at very low background levels of EFR in this system. These data show 
 

272 that PULSE can be used for inducing physiological responses in planta in a time- 
 

273 controlled manner. 
 

274 Next, we set to test the applicability of PULSE for conditional targeting of receptors 
 

275 using nanobodies. In mammalian cells, receptor complexes have been reconstituted 

 
276 and modulated using genetically encoded nanobodies26,27. Given their small size and 

 

277 their high-affinity binding characteristics, nanobodies can be used to subcellularly 
 

278 relocalize proteins in a stimulus-dependent manner or to visualize endogenous 
 

279 proteins (using fluorophore-tagged nanobodies). We constitutively expressed the 
 

280 immune receptor EFR-GFP in N. benthamiana leaf epidermal cells and co- 
 

281 transformed a genetically encoded GFP nanobody (GFP binding protein, GBP) that 

 
282 binds GFP28. To monitor localization, we additionally fused GBP to mCherry and 

 

283 placed it under the control of PULSE (POpto-GBP-mCherry). (Fig. 6c). Red light- 
 

284 induction of GBP-mCherry expression in EFR-deficient cells resulted in a cytosolic 
 

285 localization of the soluble protein. By contrast, red light-induction in cells 
 

286 constitutively expressing EFR-GFP showed an almost exclusive targeting of the 
 

287 fluorescently-tagged nanobody to the plasma membrane (Fig. 6d). This illustrates 
 

288 potential applications using PULSE-driven genetically encoded specific nanobodies 
 

289 to  conduct  time-resolved  conditional  precision  targeting  of  plasma  membrane- 
 

290 localized proteins, e.g. targeting proteins for degradation or inhibition similarly to what 

 
291 has been described in animal cells26,27,29. This approach could thus provide novel 

 

292 opportunities to non-invasively control signalling processes in plants. 
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293  
 

294 PULSE functionality in stable Arabidopsis transgenic lines 
 

295 To test the functionality of PULSE in whole plants, transgenic Arabidopsis lines were 
 

296 generated using the plasmid coding for PULSE under the control of the PCaMV35S 

 
297 promoter and POpto-FLuc as a reporter (BM00654). Seedlings of homozygous T3 

 

298 plants were grown in a multi-well plate for 7 days, before incubation with luciferin. 
 

299 The luminescence was quantified while the plate was subjected to different light 
 

300 treatments as indicated in Fig. 6e. The results for two independent PULSE lines, #4- 
 

301 4 and #6-3, show that the system is functional with activation levels ranging from 10- 
 

302 to 21-fold, respectively (determined after 12 h of red light, t36h, compared to right 

 
303 before the induction, t24h). Transfer from white light to red light led to activation of 

 

304 expression, and subsequent inactivation was achieved when the plants were moved 
 

305 back to white light (Fig. 6e), demonstrating reversibility of the system, which was 
 

306 verified also in a second cycle. This is the first example of an optogenetic tool 
 

307 controlling gene expression in whole plants, opening up unforeseen opportunities for 
 

308  

 
309  

plant research and biotechnology. 

 

310 DISCUSSION 
 

311 In order to study and understand cellular processes, it is required to be able to 
 

312 achieve a precise spatiotemporal and quantitative control over their regulation. 
 

313 Genetically encoded chemical-inducible systems have been widely employed for the 
 

314 targeted manipulation of gene expression and other signalling events in prokaryotic 

 
315 and  diverse  eukaryotic  organisms,  including  plants30–32.  However,  they  suffer from 

 

316 intrinsic drawbacks including limited temporal and spatial resolution, diffusion effects, 
 

317 and constrains to deactivate the system after the application of the inducer, in 
 

318 addition to potential pleiotropic activity and toxicity. Some of these experimental 
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319 constraints can be solved by using light as an inducer. A plant´s requirement for light 
 

320 to grow, however, limits the implementation of optogenetic approaches, as ambient 
 

321 light leads to undesired activation of most currently available light-controlled systems. 
 

322 Consequently, most of the advantages of optogenetics which have been recently 
 

323 revolutionizing animal and microbial research are simply not applicable in plants. A 
 

324 recent optogenetic approach challenged a plant intrinsic physiological conundrum, 
 

325 namely, how to conserve water under hydric stress by minimizing transpiration 
 

326 without limiting CO2 uptake, two processes directly regulated by stomatal aperture. 

 
327 Papanatsiou et al.33 resorted to a synthetic, blue light-gated K+ channel (BLINK1), 

 
328 engineered for the control of K+ conductance in animal cells34. Guard cell-specific 

 

329 expression of BLINK1 in Arabidopsis led to accelerated kinetics of ion fluxes (full 
 

330 activation after 2 min blue light), with reduction of mean stomatal opening and 
 

331 closure half-life times by 40-70% in comparison to wild type controls. Faster stomatal 
 

332 movements improved gas exchange efficiency under fluctuating light conditions, 
 

333 resulting in a more efficient water use without a trade-off in carbon assimilation. This 
 

334 tool profits from the fact that it is applied to a process that is photosynthesis- 
 

335 dependent therefore occurring already naturally under ambient light. 
 

336 Towards   a   more   generalized   application   of   optogenetic in  plants, creative 
 

337 engineering approaches are needed. We set here to design an optogenetic device 
 

338 for the control of gene expression in plants that overcomes the intrinsic challenges, 
 

339 namely, that is non-responsive to ambient illumination conditions and can be only 
 

340 activated by illuminating with a specific, narrow wavelength spectrum. The novel 
 

341 concept implements the design of a dual-wavelength optogenetic switch combining a 
 

342 blue light-regulated repressor with a red light-inducible gene expression switch. 
 

343 PULSE introduces the superior experimental assets of optogenetic systems into 
 

344 plants. The system showed a high dynamic range in Arabidopsis protoplasts with ca. 
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345 400-fold (red light vs. darkness) induction, reversibility and no toxicity. PULSE is 
 

346 applicable for the targeted study of signalling and metabolic networks by, in principle, 
 

347 allowing the control of any endogenous or synthetic promoter of interest as 
 

348 exemplified with the light-driven expression of a plant TF or of a CRISPR/Cas9- 
 

349 derived transcriptional activator. In planta, implementation of PULSE demonstrated 
 

350 tight temporal control over subcellular conditional protein targeting, and the capability 
 

351 to induce immunity in N. benthamiana leaves. The system is functional in Arabidopsis 
 

352 plants, showing high dynamic range of transgene expression when activated with red 
 

353 light and reversibility when the plants were returned to white light. PULSE could in 
 

354 the future be combined with tissue-specific promoters for organ or developmentally 
 

355 specific expression and activity, as currently done for genetically encoded biosensors 
 

356 and other tools. When using different promoters, the dynamic range of induction 
 

357 might be affected, therefore usage-specific optimizations might be necessary. 
 

358 By using only the N-terminus of PhyB (amino acids 1-650) and the first 100 amino 
 

359 acids of PIF6, we intend to minimize potential interactions of the system with 
 

360 endogenous plant components (EL222 is of bacterial origin, therefore we do not 
 

361 expect any considerable effect on plant signalling). However, we cannot rule out a 
 

362 possible PULSE cross-talk with the endogenous signalling (PhyB) pathway. This is 
 

363 an unavoidable cost to pay in exchange of getting a new functionality as it is also the 

 
364 case when using chemically inducible switches30,31 or genetically encoded 

 

365 biosensors, e.g. some hormone sensors can lead to hormone hypersensitivity 

 
366 phenotypes, as previously exemplified and discussed35. 

 

367 The strategy here presented, based on engineering and combining switches 
 

368 sensitive to different wavelengths, can be expanded to inspire the engineering of 
 

369 other optogenetic tools compatible with the plant’s growth needs. These will likely not 
 

370 be restricted to transcriptional regulation but could also be extended to the 
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371 application of selected mammalian optogenetic systems with a high transfer interest 
 

372 to the plant community, e.g. to control cellular receptors, kinase activity, ion and 

 
373 metabolite transporters, among other cellular processes1,36. For example, signalling 

 

374 proteins could be engineered for red light-regulated recruitment to sub-cellular 
 

375 locations where they activate a signalling cascade, e.g. to the plasma membrane as 

 
376 described in mammalian cells37,38. To prevent activation under white light, the same 

 

377 signalling protein could additionally be targeted for degradation under blue light by 

 
378 fusing it to a blue light-inducible degron14,39,40. Alternatively it could be sequestered to 

 
379 the nucleus under white light by fusing it to the blue light-responsive LINuS41 or 

 
380 LANS systems42. Hence, only under exclusive red light treatment, the protein would 

 

381 be targeted to the site of activity in the cytoplasm or plasma membrane and exert its 
 

382 function. 
 

383 In this work, we pioneer the optogenetic control of gene expression in plants under 
 

384 ambient light, reflecting the ground-breaking opportunities for plant fundamental and 
 

385 biotechnological fields provided by optogenetics. Due to the quantitative modulation, 
 

386 spatiotemporal resolution and the reversible control capabilities provided, we think 
 

387 that a generalized application of PULSE will facilitate the targeted manipulation and 
 

388 study of biological processes including development, metabolism, hormone 
 

389 signalling, and stress responses. 
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520 FIGURE LEGENDS 
 

521 Fig. 1. Design of PULSE, a functional optogenetic system for the control of gene 
 

522 expression in plants grown under standard light/dark cycles. Plants require light to 
 

523 grow and this poses an experimental challenge to the implementation of optogenetic 
 

524 switches in plants as they will be activated under ambient conditions. To avoid this 
 

525 issue, we designed PULSE (Plant Usable Light Switch-Element), an optogenetic tool 
 

526 that combines a blue light-regulated repressor (BOff) with a red light-inducible gene- 

 
527 expression switch (ROn). In this way gene expression is active only upon illumination 

 

528 with monochromatic red light, while remaining inactive in darkness and under blue, 
 

529 far-red, and white light, hence being applicable to plants grown under standard 
 

530 day/night cycles. (+), presence; (-), absence. 
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531 Fig. 2: Design and characterization of the blue light-regulated gene repression switch 
 

532 (BOff) in Arabidopsis protoplasts. (a) Constructs and mode of function. The 
 

533 components engineered and characterized in plant cells are: i) the blue light- 
 

534 responsive E. litoralis photoreceptor EL222 fused to either of three different repressor 
 

535 (REP-EL222) domains: KRAB, BRD, SRDX and placed under the control of the 
 

536 constitutive promoter PCaMV35S, ii) a synthetic promoter composed of the enhancer 

 
537 region of PCaMV35S, five repeats of C120 - (C120)5 - and a minimal promoter PhCMV, 

 
538 driving the expression of the reporter gene FLuc, and iii) PCaMV35S driving the 

 

539 constitutive expression of the normalization element RLuc. The transcription factor 
 

540 EL222 has a Light-Oxygen-Voltage (LOV) dependent domain and a Helix-Turn-Helix 
 

541 (HTH) domain. The photoreceptor is folded in the dark due to a flavin-protein adduct 
 

542 and incapable of binding to the (C120)5 element. As a result, expression of FLuc is 
 

543 constitutively active. Upon blue light illumination REP-EL222 unfolds allowing the 
 

544 formation of dimers binding to the (C120)5 element via the HTH. As a result, the 
 

545 initiation of FLuc transcription is repressed. (b) Characterization of the system. 
 

546 Arabidopsis protoplasts were transformed with the reporter module (pROF402) and 
 

547 the blue light-responsive element (photoreceptor, EL222) fused to either repressor: 
 

548 KRAB (pROF018), BRD (pROF050), and SRDX (pROF051) or without the 

 
549 optoswitch (∅, stuffer plasmid). Constitutively expressed RLuc (GB0109) was 

 

550 included for normalization. After transformation, protoplasts were kept in darkness or 

 
551 illuminated with different intensities of blue light (0.25, 0.5, 1, 5, 10 µmol m-2 s-1), and 

 

552 FLuc and RLuc were determined after 18 h. Shown data are FLuc/RLuc ratios of 
 

553 distinct protoplasts samples (n = 6), bars are the mean ratios and error bars indicate 
 

554 standard error of the mean (SEM). RLU = Relative Luminescence Units. NLS = 
 

555 Nuclear Localization Sequence. 
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556 Fig. 3: Molecular design and functional characterization of PULSE in Arabidopsis 
 

557 protoplasts. (a,b) Mode of function of PULSE and constructs engineered: i) blue light- 
 

558 photoreceptor  EL222  fused  to  the  SRDX  repressor  domain  (BOff),  ii)  red  light- 
 

559 activated/far-red light-inactivated (reversible) split switch comprising the first 650 
 

560 amino acids of the PhyB photoreceptor (PhyB1-650) fused to the VP16 transactivation 
 

561 domain, and the DNA-binding protein E 8mphR(A) fused to the first 100 amino acids 

 
562 of PIF6 (PIF1-100)8 (ROn). The BOff and ROn modules are constitutively expressed 

563 (promoter PCaMV35S), iii) synthetic promoter POpto comprising target sequence of the 

 
564 protein E, (etr)8, (C120)5, and the minimal promoter PhCMVmin, driving expression of 

 

565 the reporter FLuc, iv) normalization element RLuc expressed constitutively 
 

566 (PCaMV35S). Under white/ambient or blue light, SRDX-EL222 binds to (C120)5, and 

 
567 PhyB is also active (PhyBfr) due to the blue and red light components of white 

 
568 light16,17, and therefore interacts with PIF6, which is bound to (etr)8 through the E 

 

569 protein. In consequence both VP16 and SRDX are recruited to the minimal promoter, 
 

570 resulting in no expression of FLuc as the repressor has a dominant effect on gene 
 

571 expression (left). In darkness or in far-red light EL222 and PhyB are inactive (PhyBr), 

 
572 therefore not binding to POpto, resulting in no FLuc transcription (middle). There is 

 

573 FLuc expression only under monochromatic red light, in which EL222 is inactive and 
 

574 PhyB  is  active  (right).  (c)  Functional  characterization  of  PULSE.  Arabidopsis 
 

575 protoplasts  were  transformed  with  the  normalization  element,  reporter   POpto-FLuc, 

 
576 ROn module and either with the BOff module (PULSE system complete) or without BOff 

 
577 (stuffer plasmid, equivalent to the ROn system alone). Protoplasts were kept in the 

 
578 dark or illuminated with white LEDs, or 10 µmol m-2 s-1 of redλmax 655nm, blueλmax 461nm, 

579 or  far-redλmax   740nm  light.  FLuc/RLuc  ratios  of  distinct  protoplast  samples  (n  =  6) 
 

580 determined 18 h after illumination, mean and SEM are plotted. RLU = Relative 
 

581 Luminescence Units. NLS = Nuclear Localization Sequence. 
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582 Fig. 4: PULSE-controlled expression of a Cas9-derived gene activator (dCas9-TV) 
 

583 and an Arabidopsis transcription factor (LFY) in Arabidopsis protoplasts. (a,b) 
 

584 PULSE drives dCas9-TV expression (POpto-dCas9-TV) under red light. dCas9-TV 

 
585 targets the orthologous PSlDFR promoter activating FLuc expression in Arabidopsis 

 

586 protoplasts. (c-f) Optogenetic control of an Arabidopsis promoter from a plasmid 
 

587 construct (PAtAP1-FLuc) via two approaches: i) PULSE drives dCas9-TV expression 

 
588 (POpto-dCas9-TV). dCas9-TV activates expression from PAtAP1-FLuc (c,e); ii) PULSE 

 
589 drives expression of LFY-VP16 (POpto-LFY-VP16-2A-RLuc). Co-expressed RLuc via 

 

590 a self-cleaving 2A peptide serves as proxy of LFY-VP16 expression. LFY-VP16 
 

591 activates expression from the Arabidopsis promoter PAtAP1 (PAtAP1-FLuc) (d,f). RLuc 

 
592 and FLuc determinations: POpto-LFY-VP16-2A-RLuc (stripped bars) and PAtAP1-FLuc 

 

593 (solid bars) (f). Protoplasts were incubated in darkness, red or blue light, and 
 

594 luminescence determined after 18 h. Data shown are means of FLuc/RLuc of distinct 
 

595 protoplast samples (n = 4) (b,e), and RLuc and FLuc means, background values 
 

596 (configuration without POpto-LFY-VP16-2A-RLuc) subtracted for FLuc (n = 6 distinct 
 

597 protoplast samples) (f), SEM. RLU = Relative Luminescence Units. 
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598 Fig. 5: Implementation and characterization of PULSE in Nicotiana benthamiana 
 

599 leaves. (a,b) Plants Agrobacterium-infiltrated with PULSE, POpto-Venus and a 
 

600 constitutively expressed Cerulean cassette (pROF346) were kept in dark for 2.5 days 

 
601 prior to light treatment for 2 h, 6 h, 9 h (10 µmol m-2 s-1 of red light, 10 µmol m-2 s-1 of 

 

602 blue light, white light, or darkness). Samples were taken at indicated time points from 
 

603 three different areas of the leaf of two plants for each illumination condition for 
 

604 fluorescence confocal microscopy observation. At least 6 images, with 2 to 8 nuclei 
 

605 per image, were taken for each condition. Representative images are shown (a). The 
 

606 images were used to quantify the ratio of nuclear Venus and Cerulean fluorescence 
 

607 intensities (b). Data is presented as box plot with the median (center line), 
 

608 interquartile range (box) and the minimum to maximum values (whiskers), 
 

609 12 ≤ n ≤ 34 nuclei. The statistical significance is determined by a one way-ANOVA 
 

610 and Dunnett’s multiple comparison test. p-values are 0.9696, 0.0001, and 0.0001, for 
 

611 2, 6 and 9 h, respectively for red light treatment; 0.3828, 0.0020, and 0.0071, for 2, 6 
 

612 and 9 h, respectively for white light treatment; 0.0643, 0.0727, 0.9989, for 2, 6 and 9 
 

613 h, respectively for blue light treatment; 0.5051, 0.5251, and 0.7580, for 2, 6 and 9 h, 
 

614 respectively for dark treatment (**p < 0.01, ***p < 0.001, ****p ≤ 0.0001, ns not 
 

615 significant). 
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616 Fig. 6: In planta optogenetic heterologous induction of immunity and conditional 
 

617 subcellular targeting of receptors, and PULSE functionality in Arabidopsis transgenic 
 

618 lines. (a,b) PULSE-controlled conditional gain of immunity in planta. N. benthamiana 
 

619 leaves  were  Agrobacterium-infiltrated  with  PULSE  and  POpto-EFR-GFP.  Disks were 
 

620 collected from two different plants and treated with 1 µM elf18 or mock previous to 
 

621 ROS quantification over time. Luminescence mean values (n = 8 leaf disks), SEM. 
 

622 (c,d) Conditional targeting of receptors by optogenetically controlled expression of a 
 

623 nanobody (GBP-mCherry) observed by confocal microscopy. N. benthamiana leaves 
 

624 were infiltrated with PULSE, POpto-GBP-mCherry, and PCaMV35S-EFR-GFP constructs 625   

(control:  without  PCaMV35S-EFR-GFP).  (b,d)   Plants  were  kept  in   standard  growth 626 

conditions (16 h white light – 8 h dark) for 2 d prior to induction with 10 µmol m-2 s-1 

627 red light for additional 16 h (control: white light). (e) PULSE functionality in 
 

628 Arabidopsis plants. Seedlings of wild type plants (n = 6 seedlings) and two 
 

629 independent Arabidopsis homozygous T3 lines (#4-4, #6-3) transformed with PULSE 
 

630 controlling POpto-FLuc (n = 26 seedlings, each line) were grown for 8 d, subsequently 
 

631 illuminated as indicated and luminescence determined over time. Plotted data are 
 

632 mean values (background values from wild type seedlings subtracted), SEM. RLU = 
 

633 Relative Luminescence Units. 
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634 Extended Data Fig. 1. Model-based functional characterization, and prediction and 
 

635 validation of PULSE function. (a,b) Quantitative characterization of On-Off FLuc 
 

636 expression kinetics. Protoplasts of Arabidopsis were transformed with PULSE and 
 

637 first kept in the dark, 12 h for protein (a) and 16 h for mRNA (b) determination 

 
638 assays. Samples were afterwards illuminated with either 10 µmol m-2 s-1 of red or 

 

639 blue light, or kept in darkness for the indicated time periods. Arrows indicate the time 
 

640 point where the samples were split into different illumination conditions for response 
 

641 and reversibility analyses, e.g. red to dark, red to blue (On-Off), red to blue to red 
 

642 (On-Off-On). Samples were collected every 3 h for 15 h for FLuc and RLuc 
 

643 determinations in a plate reader (a); and at 15 min, 30 min, 1 h, 2 h, 4 h, 4 h 15 min, 
 

644 4 h 30 min, 6 h, 7 h for RT-qPCR determinations of mRNA production (b). The curves 
 

645 are the fits to the ODE-based model. The shaded areas represent the error bands as 
 

646 calculated in 95% confidence intervals with a constant Gaussian error model using 
 

647 the profile likelihood method. Depicted are the FLuc/RLuc ratios for protein 
 

648 expression kinetics of distinct protoplast samples (n = 6) (a), and the ratio between 
 

649 starting quantity (SQ) of FLuc and the geometric mean of EF, TIP41L (internal 
 

650 normalization controls) transcripts, of two technical replicates for each transcript (b). 
 

651 (c) Model aided prediction of PULSE-controlled protein expression levels as a 
 

652 function of red light intensities and illumination times. The calibrated model yields 
 

653 estimated FLuc/RLuc expression ranges (heatmap). (d) Experimental validation of 
 

654 the model predictions of the operating range of PULSE. Selected model simulated 
 

655 expression levels at different red light intensities and illumination times as indicated 
 

656 in (c) were experimentally tested and the resulting FLuc/RLuc ratios (2xSEM, n = 6 
 

657 distinct protoplast samples) were compared to the predicted values (error bars 
 

658  

 
659  

calculated as in (a,b)). RLU = Relative Luminescence Units. 
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660 ONLINE METHODS 
 

661 Plasmid construction 
 

662 A description of the plasmid construction can be found in Supplementary Table 1. 
 

663 DNA fragments were released by restriction from existing plasmids, amplified by 
 

664 PCR using  primers  synthesized  by  Sigma  Aldrich  or Eurofins genomic (listed in 
 

665 Supplementary Table 2), or synthesized by GeneArt, Invitrogen. The PCR reactions 
 

666 were performed using Q5 High-Fidelity DNA Polymerase (New England Biolabs). Gel 
 

667 extractions  were  performed  using  NucleoSpin®  Gel  and  PCR  Clean-up  kit 
 

668 (Macherey-Nagel),  or  Zymoclean  Gel   DNA   Recovery   Kit   (Zymo   Research).   

669  Assemblies were performed using either Gibson43, AQUA44, GoldenBraid45 or Golden   

670 Gate46,47 cloning methods prior to transformation into chemically competent 

671 Escherichia  coli  strain 10-beta (NEB)   or   TOP10  (Invitrogen).  The plasmid 
 

672 purifications were performed using Wizard® Plus SV Minipreps DNA Purification 
 

673 Systems  (Promega),  NucleoBond®  Xtra  Midi  kit  (Macherey-Nagel)  or GeneJET 
 

674 Plasmid Miniprep Kit (Thermo Scientific). All preparations were tested by restriction 
 

675 enzyme digests and sequencing (GATC-biotech/SeqLab). All restriction enzymes 
 

676 were purchased from New England Biolabs or Thermo Scientific. 
 

677 Arabidopsis protoplast isolation and transformation 
 

678 Protoplasts were isolated from two- to three-week old Arabidopsis thaliana plantlet 
 

679 leaves, grown on 12 cm square plates containing SCA medium (0.32 % (w/v) 
 

680 Gamborg B5 basal salt powder with vitamins (bioWORLD), 4 mM MgSO4·7H2O, 43.8 

 
681 mM sucrose and 0.8% (w/v) phytoagar in H2O, pH 5.8, autoclaved, 0.1 % (v/v) 

 

682 Gamborg B5 Vitamin Mix (bioWORLD), in a 23 °C, 16 h light - 8 h dark regime. A 
 

683 floatation method was employed for isolation and the plasmids were transferred by 

 
684 polyethylene glycol-mediated transformation as described before10. Shortly, plant leaf 

 

685 material was sliced with a scalpel and incubated in dark at 23 °C overnight in MMC 
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686 solution (10 mM MES, 40 mM CaCl2·H2O, mannitol 85 g L-1, pH 5.8, sterile filtered) 
 

687 containing 0.5 % cellulase Onozuka R10 and macerozyme R10 (SERVA 
 

688 Electrophoresis GmbH). After release of the protoplasts with a pipette, the 
 

689 suspension was transferred to a MSC solution (10 mM MES, 0.4 M sucrose, 20 mM  

690  MgCl2·6H2O,  85  g  L-1  mannitol,  pH  5.8,  sterile  filtered)  and  overlaid  with  MMM   

691 solution (15 mM MgCl2, 5 mM MES, 85 g L-1 mannitol, pH 5.8, sterile filtered). The 

692 protoplasts were collected at the interphase and transferred to a W5 solution (2 mM 
 

693 MES, 154 mM NaCl, 125 mM CaCl2·2H2O, 5 mM KCl, 5 mM glucose, pH 5.8, sterile 
 

694 filtered) prior to counting in a Rosenthal chamber. Mixtures of the different plasmids, 
 

695 as described in the figures, to a final amount of 30-35 μg DNA were used to 
 

696 transform 500,000 protoplasts by dropwise addition of a PEG solution (4 g PEG4000, 

 
697 2.5 mL of 0.8 M mannitol, 1 mL of 1 M CaCl2 and 3 mL H2O). After 8 min incubation, 

 

698 120 µL of MMM and 1,240 µL of PCA (0.32 % (w/v) Gamborg B5 basal salt powder 
 

699 with vitamins (bioWorld)), 2 mM MgSO4·7H2O, 3.4 mM CaCl2·2H2O, 5 mM MES, 

 
700 0.342 mM L-glutamine, 58.4 mM sucrose, 80 g L−1 glucose, 8.4 µM Ca-panthotenate, 

 

701 2 % (v/v) biotin from a biotin solution 0.02 % (w/v) 0.1 % (v/v) in H2O, pH 5.8, sterile 

 
702 filtered, 0.1 % (v/v) Gamborg B5 Vitamin Mix, 64.52 µg µL-1 ampicillin) were added to 

 

703 get a final volume of 1.6 mL of protoplast suspension. 
 

704 After transformation, protoplasts were then divided in different 24-well plates in 960 
 

705 µL aliquots (300,000 protoplasts-necessary to measure six technical replicates for 
 

706 both FLuc and RLuc) or in 640 µL aliquots (200,000 protoplasts-necessary to 
 

707 measure 4 technical replicates for both FLuc and RLuc). Afterwards, the plates were 
 

708 either illuminated with LED arrays with the appropriate wavelength and intensity (as 
 

709 indicated in the figures) for 18 - 20 h at 19 - 23 °C unless indicated otherwise. 
 

710 Illumination conditions 
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711 Custom made LED light boxes were used as described before10,48. The panels 
 

712 contain LEDs from Roithner: blue (461 nm), red (655 nm), far-red (740 nm) and white 
 

713 LEDs (4000K). For blue, red or far-red light treatment, the intensity was adjusted to 

 
714 10 µmol m-2 s-1 unless indicated otherwise. White LEDs were supplemented with blue 

 

715 and far-red LEDs in order to have an equivalent ratio of blue, red and far-red light 
 

716 similar to the sunlight spectra (simulated white light). The  intensity of the white light  

717   LED was adjusted to 10 µmol m-2 s-1 for the following wavelength ranges: blue 420 -    

718 490 nm, red 620 - 680 nm, and far-red 700 - 750 nm49 (see spectra shown in 

719 Supplementary Fig. 7). For the Nicotiana benthamiana GUS experiment the plants 
 

720 were kept, prior light treatment, in the plant incubator with fluorescent tubes (cool 
 

721 daylight, OSRAM). Cell- and plant- handling and sampling was done, when needed, 
 

722 under green LED (510 nm) light which does not affect the PULSE system. Spectra 
 

723 and intensities were obtained with a spectroradiometer (AvaSpec-ULS2048 with 
 

724 fiber-optic FC-UVIR200-2, AVANTES). 
 

725 Luciferase protoplasts assay 
 

726 Firefly (FLuc) and Renilla luciferase (RLuc) activities were quantified in intact 

 
727 protoplasts as detailed elsewhere10. Six technical replicates of 80 µL protoplast 

 

728 suspensions (approximately 25,000 protoplasts) were pipetted into two separate 96- 
 

729 well white flat-bottom plates (Costar) for simultaneous parallel quantification of both 
 

730 luciferases. Addition of 20 µL of either FLuc substrate (0.47 mM D-luciferin (Biosynth 
 

731 AG),   20   mM   tricine,   2.67   mM   MgSO4·7H2O,   0.1   mM   EDTA·2H2O,   33.3 mM 
 

732 dithiothreitol, 0.52 mM adenosine 5′-triphosphate, 0.27 mM acetyl–coenzyme A, 5 
 

733 mM NaOH, 264 µM MgCO3·5H2O, in H2O, pH 8), or RLuc substrate (0.472 mM 
 

734 coelenterazine stock solution in methanol, diluted directly before use, 1:15 in 
 

735 phosphate buffered saline, PBS) was performed prior luminescence determination in 
 

736 a plate reader (determination of 20 min kinetics, integration time 0.1 s). RLuc 
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737 luminescence was measured with a BertholdTriStar2 S LB 942 multimode plate 
 

738 reader and FLuc luminescence was determined with a Berthold Centro XS3 LB 960 
 

739 microplate luminometer. When applicable, FLuc/RLuc was determined and the 
 

740 average of the replicates and SEM was plotted (n = 4 - 6). 
 

741 RNA isolation and quantitative RT-qPCR 
 

742 Protoplasts were isolated and transformed as described before. The protoplasts were 
 

743 kept in the dark, at room temperature for 16 h prior illumination treatment. At the 

 
744 indicated time point and illumination condition, samples containing ca. 106 

 

745 protoplasts were collected by centrifugation (10 min, 100 g) and were frozen in liquid 
 

746 N2 for posterior RNA extraction. The RNA was extracted with a PeqGold Plant RNA 
 

747 kit following the user specifications. The samples were treated with DNase I (Thermo 
 

748 Scientific). The cDNA was synthesized from 500 ng of the RNA samples, using the 
 

749 Revert Aid Reverse Transcriptase (Thermo Scientific) and diluted 1:100 prior to 
 

750 qPCR. Expression levels on the samples were measured in duplicates using SYBR® 
 

751 Green Master Mix (Bio-Rad) with specific primer pairs in  a Real-time PCR cycler      

752  CFX96  (Bio-Rad)  as described  before50. A DNA  mass  standard for each  gene  was 

753 prepared in serial dilutions of 102 to 107 copies and measured in parallel with the 

754 samples. The genes TIP41-like family protein, TIP41L (At4g34270), and Elongation 
 

755 Factor, EF (At5g19510), were used as an internal reference genes. Starting quantity 
 

756 values of the samples were calculated using the mass standard curve and 
 

757 normalized with the internal reference gene. Primer pairs used to amplify the DNA 
 

758 mass standard are oROF422/oROF423 for FLuc, oROF518/oROF519 for TIP41L, 

 
759 and EF STD 5’/3’50 for EF. Specific primer pairs used for the qPCR are 

 

760 oROF424/oROF425 for FLuc cDNA, oROF514/oROF515 for TIP41L cDNA, and EFc 

 
761 RT 5’/3’50 for EF cDNA (Supplementary Table 2). 

 

762 Agrobacterium tumefaciens transformation 



34  

763 Electro-competent Agrobacterium tumefaciens strains C58 (pM90), GV3101 (pM90), 
 

764 containing pSOUP helper plasmid, or AGL1  was  transformed  with  the  plasmid  of 

765   interest.  Clones  growing  in  YEP  media  (10  g  L-1  yeast  extract,  10  g  L-1  bacto   

766 peptone, 5 g L-1 NaCl, pH 7.0) supplemented with appropriate antibiotics were 

767 selected and each transcriptional unit was confirmed by colony PCR using Q5 DNA 
 

768 polymerase (New England Biolabs). 
 

769 Transient transformation of Nicotiana benthamiana plants 
 

770 A. tumefaciens cultures were adjusted to OD600nm = 0.1 - 0.2 in infiltration medium 

 
771 (10 mM MgCl2,10 mM MES, 200 µM acetosyringone, in H2O, pH 5.6). The cultures 

 

772 were mixed in a volume ratio 1:1 with an A. tumefaciens culture coding for the RNA 
 

773 silencing suppressor p19. The cultures were incubated for 3 h at room temperature in 
 

774 the dark prior infiltration through the adaxial part of leaves from 4- to 5-week old N. 

 
775 benthamiana grown in the greenhouse as described before51. The plants were 

 

776 incubated for 2-3 days in the indicated illumination conditions prior to light treatment 
 

777 and analysis by microscopy or enzymatic GUS reporter assay. 
 

778 GUS reporter assay in Nicotiana benthamiana leaves 
 

779 After the illumination of the plants as depicted in the Supplementary Fig. 5, two 
 

780 disks of 0.8 cm diameter from different leaves for each illumination treatment were 
 

781 cut  and  incubated  on  GUS  substrate  (100  mM  Na2HPO4,  100  mM  NaH2PO4,  782   

adjusted to pH 7.0, 2 mM K3Fe(CN)6, 2 mM K4Fe(CN)6, 2 mM X-Gluc, 0.20 % Triton    783 X-

100, in H2O) for 3 h at 37°C in dark52. The stained disks were washed several 

784 times with 70% ethanol to remove the chlorophylls and the pictures were taken with a 
 

785 Nikon D3200 camera. 
 

786 Confocal imaging of Nicotiana benthamiana leaf material 
 

787 For the experiments of optogenetically controlled Venus, leaves of one to two plants 
 

788 for each condition were transiently transformed and incubated for 2.5 days in the 
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789 dark, and afterwards illuminated for 2 h, 6 h or 9 h with the appropriate wavelength 
 

790 as indicated in Fig. 5a,b. Samples were taken at indicated time points from three 
 

791 different areas of the leaves of the two plants and imaged with a LSM 780 Zeiss laser 
 

792 scanning confocal microscope. The constitutive Cerulean was excited with a Diode 
 

793 405-30 at 405 nm. The optogenetically controlled Venus expression was excited with 
 

794 an Argon laser at 514 nm. The emission was detected at 440-500 nm for Cerulean 
 

795 and 516-560 nm for Venus. For each condition at least 6 images, with 2 to 8 nuclei 
 

796 per image, were generated. The fluorescence intensities of nuclei were quantified 
 

797 using ImageJ. For each nucleus, an area was selected by using the elliptical 
 

798 selection tool and the mean grey values of the Cerulean and Venus channels were 
 

799 measured, respectively. The ratio of Venus and Cerulean was calculated and 
 

800 expressed in percentage, and plotted for 12 - 34 nuclei (see Life Science reporting 
 

801 summary for detailed information). 
 

802 For the experiments of conditional targeting and immunity control, N. benthamiana 
 

803 were grown for 2 d in 16 h simulated white light – 8 h dark cycle (see 
 

804 Supplementary Fig. 7), hereafter half of the plants were grown for 16 h in red light 
 

805 only to induce expression (red light-induced), the other half were grown in simulated 
 

806 white light for 16 h (white light control). The white light control plants were further 
 

807 grown for 16 h after the experiments in red light to induce expression as control for 
 

808 successful transformation. Samples were taken for confocal observation. Confocal 
 

809 laser scanning microscopy was performed with a Leica SP8 confocal microscope 
 

810 using a 20×/0.75 HC PL APO CS IMM CORR lens with a scanning speed of 200 Hz. 
 

811 EFR-GFP and GBP-mCherry were excited with a white light laser at 488 nm and 561 
 

812 nm, respectively. The emission was detected at 500 - 550 nm for GFP and 575 - 630 
 

813 nm for mCherry. 
 

814 Reactive oxygen species (ROS) burst assay 
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815 Samples were collected from N. benthamiana leaves transformed with the indicated 
 

816 constructs or only infiltration buffer (two plants were used for each illumination 
 

817 treatment). ROS production was determined using a BMG CLARIOstar plate reader 

 
818 and following the protocol by Trujillo53 for Arabidopsis leaves with the following 

 

819 modifications: samples were prepared with a 4 mm biopsy puncher and placed in 150 
 

820 μL sterile tap water for 3 h in dark to get rid of any ROS production originating from 
 

821 the sample harvest before elf18 or control treatment. Approximately 20 min before 
 

822 addition of 1 μM elf18, water was removed from leaf samples and replaced with 

 
823 reaction solution53, incubated for ca. 3 min before background measurement of ROS 

 

824 production was performed for ca. 15 min followed by addition of reaction solution with 
 

825 elf18 or without (mock control). 
 

 
826 Stable transformation of Arabidopsis thaliana 

 

827 Four to five week old A. thaliana ecotype Columbia plants grown in a plant chamber 
 

828 (16 h light – 8 h dark, 22°C) were transformed via Agrobacterium tumefaciens by 

 
829 floral dip as described earlier54 with minor modifications. Agrobacterium cells 

 

830 transformed with the corresponding constructs (described in Supplementary Table 
 

831 1)  were  grown  to  OD600nm  values  between  0.6  and  0.9,  centrifuged  and  gently 
 

832 resuspended in 2.4 g/L Murashige & Skoog medium including vitamins (Duchefa 
 

833 Biochemie), 5% (w/v) sucrose, 0.05% (v/v) Silwet L-77 (bioWORLD) and 222 nM 6- 
 

834 Benzylaminopurine (Duchefa Biochemie). 
 

835 Transformants were selected by seeding in SCA plates (0.32 % (w/v) Gamborg B5 
 

836 basal salt powder with vitamins (bioWORLD), 4 mM MgSO4·7H2O, 43.8 mM sucrose, 
 

837 0.8 % (w/v) phytoagar, 0.1 % (v/v) Gamborg B5 Vit Mix (bioWORLD), pH 5.8) 

 
838 containing 30 µg mL-1 kanamycin (Duchefa Biochemie) and 150 µg mL-1 ticarcillin 

 

839 disodium/potassium clavulanate (Duchefa Biochemie). The positive T1 plants were 
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840 checked for expression of the reporter/normalization gene when possible, and the T2 
 

841 seeds  were  collected  and  selected  in  kanamycin  containing  media.  The  lines 
 

842 exhibiting a segregation ratio 3:1 (resistant to sensitive) were propagated until a T3 
 

843 generation and homozygous lines were selected and used for further experiments. 
 

844 The transgenic PULSE lines are functional and viable. 
 

 
845 Luciferase assay in Arabidopsis thaliana plants 

 

846 Seeds from the A. thaliana lines (n = 26 for the PULSE lines, n = 6 for the wild type 
 

847 controls) were seeded in individual wells of white 96-well white flat-bottom plates 

 
848 (Costar), containing 200 µL of 2.4 g L-1 Murashige & Skoog medium including 

 

849 vitamins (M0222, Duchefa Biochemie ) and 0.8 % (w/v) phytoagar (bioWORLD). 
 

850 They were kept for 3 - 4 days at 4°C in the dark, and illuminated for 1 h with 
 

851 simulated white light (see spectra in Supplementary Fig. 7) on the fourth day. Then 
 

852 the plate was placed in simulated white light with photoperiod (16 h light – 8 h dark) 
 

853 for 4 days. Addition of 20 µL of FLuc substrate 1.667 mM D-luciferin (from a 20 mM 
 

854 stock in DMSO, Biosynth AG) and 0.01 % Triton in H2O was performed on the fourth 
 

855 day prior starting the measurements. The plate was sealed with an optically clear film 
 

856 (Sarstedt) thinly perforated. Luminescence was measured, 1 - 2 days after addition of 
 

857 the substrate, in a Berthold Centro XS3 LB 960 microplate reader every hour during 
 

858 several days (1 min delay, 0.5 integration time) while being illuminated as indicated. 
 

859 The background readout levels of Arabidopsis wildtype seedlings were averaged, 
 

860 and the value was subtracted from the rest of the lines for each time point. 
 

 
861 Sample size, replication and statistics 

 

862 Data shown in the figures are representative experiments from at least two 
 

863 independent experiments (see Life Science Reporting Summary for detailed 
 

864 information). The sample number per experiment is indicated in each corresponding 
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865 figure. Plotting and statistical tests were performed with GraphPad or MATLAB 

866 software. 

 

867 
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