Green, Dale ORCID: https://orcid.org/0000-0002-2549-0486, Humphries, Ben, Dijkstra, Arend G. and Jones, Garth (2019) Quantifying non-Markovianity in underdamped versus overdamped environments and its effect on spectral lineshape. The Journal of Chemical Physics, 151 (17). ISSN 0021-9606
Preview |
PDF (NMI___Lineshape_JCP_submitted)
- Accepted Version
Download (647kB) | Preview |
Abstract
Non-Markovian effects in open quantum systems are central to understanding spectral lineshape. Here, we quantify the non-Markovianity associated with both overdamped and underdamped vibrations in terms of information flow between the bath and the system and compare this with the broadening and ellipticity of two-dimensional spectra. Using the Breuer Laine Piilo (BLP) measure, we link well-known stochastic models for spectral lineshape with modern quantum information theory. Specifically we study the effect of non-Markovianity in a system in contact with underdamped vibrations and examine the differences observed on increasing the damping to the overdamped limit. The open quantum system dynamics are evolved using the hierarchical equations of motion, efficiently terminated with a Markovian cut-off, where separate hierarchies are derived for the underdamped and overdamped environments. It is shown that the BLP measure is quantitatively correlated with the ellipticity of two-dimensional spectra and memory effects are more pronounced in underdamped environments, due to the long-lived feedback of information between the system and its bath, compared to overdamped environments. Environmental signatures in spectral lineshapes emerge as a result of information flow from the bath back into the system.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Chemistry (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Chemistry of Light and Energy Faculty of Science > Research Groups > Centre for Photonics and Quantum Science Faculty of Science > Research Groups > Fluids & Structures Faculty of Science > Research Groups > Quantum Matter Faculty of Science > Research Groups > Numerical Simulation, Statistics & Data Science |
Depositing User: | LivePure Connector |
Date Deposited: | 18 Oct 2019 10:30 |
Last Modified: | 01 Jan 2025 00:51 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/72688 |
DOI: | 10.1063/1.5119300 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |