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Non-Markovian effects in open quantum systems are central to understanding spectral lineshape. Here, we
quantify the non-Markovianity associated with both overdamped and underdamped vibrations in terms of
information flow between the bath and the system and compare this with the broadening and ellipticity of
two-dimensional spectra. Using the Breuer Laine Piilo (BLP) measure, we link well-known stochastic models
for spectral lineshape with modern quantum information theory. Specifically we study the effect of non-
Markovianity in a system in contact with underdamped vibrations and examine the differences observed on
increasing the damping to the overdamped limit. The open quantum system dynamics are evolved using the
hierarchical equations of motion, efficiently terminated with a Markovian cut-off, where separate hierarchies
are derived for the underdamped and overdamped environments. It is shown that the BLP measure is quanti-
tatively correlated with the ellipticity of two-dimensional spectra and memory effects are more pronounced in
underdamped environments, due to the long-lived feedback of information between the system and its bath,
compared to overdamped environments. Environmental signatures in spectral lineshapes emerge as a result
of information flow from the bath back into the system.
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I. INTRODUCTION

Condensed phase spectroscopy, in its various forms,
has found wide application in chemistry and physics not
only for its usefulness in probing the chemical struc-
ture of solute molecules, but for also providing de-
tailed information of the solvent dynamics via the spec-
tral lineshape.1–5 In linear spectroscopy, inhomogeneous
and homogeneous broadening are mixed on a single
spectral axis.6 Two-dimensional (2D) spectroscopy over-
comes this by separating the inhomogeneous and homo-
geneous contributions with the use of a four-wave mix-
ing procedure; the inhomogeneous component being pro-
jected onto the diagonal axis and the homogeneous onto
the anti-diagonal.3,7,8 The two-dimensional lineshape de-
pends sensitively on the time scale of interactions of the
chromophore probed with the environment. Homogene-
nous and inhomogeneous broadening are the short and
long time limits, respectively, but, if the system-bath in-
teraction time scale is not in either limit, the spectral
lineshape will be sensitive to the time scale. In this case,
it is necessary to describe the history of the bath. In order
to microscopically model 2D spectroscopy experiments
with accurately broadened peaks, one must have con-
fidence that the theoretical framework being employed
can describe this history sufficiently well, and in-turn,
that the state of the bath over this history influences the
dynamics of the quantum system correctly.
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Accurately modelling the interactions of a bath with
a quantum system of interest presents a significant chal-
lenge and over the years, highly sophisticated open quan-
tum system methodologies have been developed.9,10 Gen-
erally, the quantum system of interest is treated explicitly
and is distinguished from the bath degrees of freedom,
which are modelled stochastically, often as an ensemble
of harmonic oscillators defined via a spectral density.11,12

There are a number of perturbative approaches for mod-
elling these types of systems that allow one to calcu-
late adequate spectral lineshapes phenomenologically.1,13

However, it is often desirable to use a more physically re-
alistic microscopic model, whereby one can evolve the
reduced density matrix of the system subject to a given
Hamiltonian within a non-perturbative formalism. One
of the most commonly employed non-perturbative ap-
proaches in recent years is the hierarchical equations of
motion (HEOM), originally developed by Tanimura and
co-workers.14–16 Here the propagation of an hierarchy
of auxiliary density operators (ADOs) accounts for the
quantum system’s memory of the bath. HEOM methods
for a variety of spectral densities have found numerous
applications, including studies of electron transfer and
exciton dynamics in molecular aggregates.17–20

Dynamically, the memory of the bath can be under-
stood in terms of the rate of relaxation of the system rel-
ative to that of its surrounding environment. The signifi-
cance of the bath memory effects to the system dynamics
is often referred to as the degree of non-Markovianity, in
analogy to classical probability theory.21 In the Marko-
vian limit, the fluctuations of the bath are much faster
than those of the system and consequently the open
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quantum system evolves with no memory of the state
of the bath at earlier times.10,22 On the other hand, in
non-Markovian cases, the quantum system and the bath
oscillate on similar time scales and the system dynam-
ics are dependent upon some memory of the state of the
bath at earlier times.23 Therefore, it is essential to incor-
porate the influence of the bath on the system over some
finite history, when evolving the reduced density matrix
of the system.

More rigorously, one can understand these limits in
terms of the flow of information between the system
and bath; information within this context correspond-
ing to the distinguishability of one quantum system
from another.24,25 In the Markovian limit, information
flows unidirectionally from the system to the bath. The
faster bath oscillations mean that information is irre-
versibly lost from the system to the bath. In the non-
Markovian case, information can be transferred from the
bath back into the system.26 The similar system and
bath time scales providing opportunity for information
recently transferred to the bath to return to the system
before it is dissipated further. Note that because non-
Markovian evolution allows information to flow in both
directions, it implicitly includes Markovian evolution as
a limiting case.

For our purposes, the open quantum system corre-
sponds to the vibrational motion of a thermodynamic
ensemble, where the solute chromophore is the quantum
system of interest and the solvent, its bath. Coupling to
the bath degrees of freedom causes the vibrational motion
of the system to become damped, leading to dissipation
and dephasing.15 This has consequences for the wider
system dynamics, particularly after undergoing pertur-
bation by external forces, such as the electric field of a
laser pulse. It is therefore the bath damping which ulti-
mately determines the lineshape in spectroscopy. Mini-
mal damping allows the full vibrational structure to be
detected, whilst significant damping leads to the homo-
geneous and inhomogeneous limits.27 The homogeneous
limit, associated with strong damping but where the bath
relaxation is still fast compared with that of the sys-
tem, results in identical system-bath interactions across
the ensemble.15 That is to say, the individual solute
molecules become entirely indistinguishable. Whereas in
the inhomogeneous, or static, limit the solute molecules
exist in a broader distribution of states, due to much
slower bath motion caused by the strongest damping.3

The objective of this work is to understand experi-
mental spectral lineshape in terms of information flow
and memory effects, from a microscopic perspective,
between a quantum system and its bath. We mea-
sure the degree of non-Markovianity for a simple two
level system whose vibration is damped by a harmonic
bath, in both the underdamped and overdamped limits.
The affect of increased damping on the measurable non-
Markovianity is assessed by modelling the return to equi-
librium of the system after perturbation by an external
laser field. Comparison with calculated linear absorp-

tion and 2D photon echo spectra for each of the damping
limits demonstrates the importance of non-Markovian ef-
fects in determining spectral lineshape. This is achieved
through application of separate HEOM methods derived
specifically for the underdamped and overdamped lim-
its, both terminated with an efficient Markovian conver-
gence parameter. Our results show that theoretically
calculated non-Markovianity defined by the BLP mea-
sure is directly correlated with the ellipticity in the two-
dimensional spectra, which is experimentally observable.

II. MEASURING NON-MARKOVIANITY

Interactions between the chromophore and its envi-
ronment correspond to the exchange of information be-
tween the system and bath along a quantum channel.21 In
the language of quantum information theory, the quan-
tum channel is an operator through which information is
transferred. As a consequence, a quantum channel repre-
sents an exact description of the evolution of the density
operator.

The Von-Neumann entropy, a functional capable of de-
scribing a mixed state, links bulk thermodynamic prop-
erties with discrete bits of quantum information.28 When
there is a maximal knowledge of the system it is in a pure
quantum state with zero entropy. Conversely, if there is
less than complete knowledge of the system, then it is
a mixed state, where the magnitude of information is
proportional to the number of microstates and inversely
proportional to their respective weights.29 Given a den-
sity matrix, ρ, for an ensemble of system particles, we can
write the entropy functional as S(ρ) ≡ −kBTr(ρ ln ρ).9

Crucially, the entropy functional is zero if and only if ρ
is a pure state.

For a Markovian process, the future state of the den-
sity matrix is dependent only on the present state. It is
intuitive for a process that follows the Markov property
to have a concave entropy functional, ρ 7→ S(ρ), such
that S (

∑
i λiρi) ≥

∑
i λiS(ρi), for non-vanishing λi.

9,28

Furthermore, when the system is composite, there is a
subadditivity condition: H = H(1) ⊗H(2) where S(ρ) ≤
S(ρ(1)) + S(ρ(2)). Consequently, during a Markovian
evolution, the system is monotonically losing informa-
tion to the environment, as each successive state evolves
independently of its history towards equilibrium.10,21,22

Monotonic loss of information for quantum states is de-
fined by decreasing distinguishability of different quan-
tum systems with time.24

The intrinsic relationship between the maximal val-
ues of information flux, entropy and distinguishability of
particles is manifest in the trace distance. For a pair of
states, ρ1 and ρ2, the trace distance is defined as,22,26,30

D(ρ1, ρ2) = 1
2Tr |ρ1 − ρ2|, (1)

where |A| = (A†A)1/2. The metric is constructed in this
way to ensure that the supports of the kernel matrix are



3

orthogonal when the flux of information is negative, cor-
responding to an increase in entropy of the system and a
loss of distinguishability. The factor of half denotes that
each state is equally probable, and the matrix half power
is defined by diagonalization. The maximum and mini-
mum values of the trace distance are observed when the
supports are orthogonal or parallel, respectively. Physi-
cally this corresponds to completely distinguishable and
completely indistinguishable quantum states.

FIG. 1. The trace distance, D(ρ1, ρ2), for a two level system
initially in its ground state (outer) compared with its excited
state (inner) decreases as the excited state population relaxes,
following the decrease in distinguishability.

A demonstration of the trace distance is given in figure
1 for a simple two level system with orthogonal initial
conditions. The nested pie charts show the populations
of the ground (g) and excited (e) states at specific times,
where the outer (inner) chart corresponds to an initial
population entirely in its ground (excited) state. As time
progresses, the excited state irreversibly dissipates energy
into the bath, increasing the ground state population,
leading to a decrease in distinguishability between the
two systems, resulting in a decrease in the trace distance.

Using this definition of distinguishability, it is possible
to construct a measure of non-Markovianity.24 Changes
in the distinguishability of quantum systems are due to
changes in the values of bits of information as a function
of time and hence the key dynamical property is the flux
of information between the system of interest and the
bath, σ.31

σ =
d

dt
D(ρ1, ρ2) =

d

dt

(
1

2
Tr|ρ1 − ρ2|

)
. (2)

Markovianity requires a divisible dynamical map from
the time convolutionless master equation, Λ(t + τ, 0) =
Λ(t + τ, t)Λ(t, 0), and a monotonic loss of information
to the environment.9 This means that a non-Markovian
process must correspond to a strictly positive flux, σ > 0.
However, divisibility is not a necessary condition for neg-
ative flux. That is to say, a negative flux is a neces-

sary but not sufficient condition for Markovianity. Con-
sequently, we take the information flux for our system
and set every negative value to zero leaving the purely
non-Markovian contributions. Then by integrating over
time for the maximum positive flux in the system, we can
define a magnitude for the information returned to the
system and the degree of non-Markovianity. The BLP
measure, N , has been used previously to quantify the
non-Markovianity of a general quantum system in this
way,24,26,30,32,33

N = max
ρ1,2s

∫
σ>0

σ(t) dt. (3)

Therefore, a non-Markovian evolution has a strictly
non-zero information flux and a quantifiable non-
Markovianity of N . Through this measure, we can relate
microscopic non-Markovianity with macroscopic spectral
properties.

III. THEORETICAL MODEL

We define a two-level-system with a ground, |g〉, and
excited, |e〉, state as

ĤS = −~ωeg
2

σz, (4)

where ω̃eg = 3000 cm−1 and the dipole moment operator
µ̂ = σx. The electronic states of the system are coupled
to a single vibrational mode of frequency ω̃0 = 500 cm−1,
whose coordinates are in turn coupled to those of the en-
vironment, which is modelled as a bath of harmonic os-
cillators representing phonon modes.34 Assuming a con-
tinuum of bath modes with masses, mα, and frequencies,
ωα, the distribution of coupling strengths, gα is deter-
mined by the spectral density, J(ω).35,36

J(ω) =
∑
α

g2α
2mαωα

δ(ω − ωα). (5)

Through a canonical transformation, the vibrational
mode of the system is subsumed into the bath degrees of
freedom, creating a Brownian oscillator which couples di-
rectly to the electronic states of the system and is damped
by the motion of the wider environment through the pa-
rameter γ.34–36 The system couples to the bath through
the operator,

V̂S = σx −
σz
2
, (6)

accounting for both dephasing, σz, and dissipation, σx
processes.23,37,38 Here, dephasing refers to the decoher-
ence of wavepackets due to the stochastic perturbation of
the system potential energy surface by the bath modes,
causing the system transition frequency to deviate from
its equilibrium value. Dissipation refers to the relaxation
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of the system as excitation energy is transferred to the
bath degrees of freedom.

When 2ω0 � γ, the Brownian oscillator is under-
damped and has the spectral density,

J(ω) =
2~ηγω2

0ω

(ω2
0 − ω2)2 + γ2ω2

, (7)

which features a peak at the mode frequency, with a
width controlled by γ.39 The strength of the system-bath
coupling is determined by the reorganisation energy, η,
which is temperature dependent,1

η =
~∆2

2kBT
. (8)

In terms of dephasing, ∆ is the fluctuation amplitude, a
measure of the range over which the transition frequency
of the system fluctuates. Stronger system-bath coupling
leads to greater deviation from the equilibrium transition
frequency and faster dephasing.

The influence of the entire bath degrees of freedom is
captured within the system-bath correlation function,

C(t) =
1

π

∫ ∞
0

dωJ(ω)

(
coth

(
β~ω

2

)
cosωt− i sinωt

)
,

(9)
where β = (kBT )−1.14,39 This obeys the fluctuation-
dissipation theorem, where the imaginary component
causes dissipation and the real component is responsible
for thermally induced fluctuations.36,40

The solution to the correlation function is the sum of
exponential terms, containing the bosonic Matsubara fre-
quencies, νk; k = 0, 1, 2, ...,M , and prefactors, ck,1,39

C(t) =

M∑
k=0

cke
−νkt, (10)

where, with ζ =
√
ω2
0 −

γ2

4 ,

ν0 =
γ

2
− iζ, (11)

ν1 =
γ

2
+ iζ, (12)

νk =
2π(k − 1)

~β
, (13)

c0 =
~ηω2

0

2ζ

{
coth

(
~β
2

(
ζ + i

γ

2

))
− 1

}
, (14)

c1 =
~ηω2

0

2ζ

{
1− coth

(
~β
2

(
−ζ + i

γ

2

))}
, (15)

ck = −4ηγω2
0

~β
νk

(ω2
0 + ν2k)2 − γ2ν2k

. (16)

An hierarchy of auxiliary density operators (ADOs)

can then be derived and propagated using,

ρ̇j(t) = −

(
i

~
Ĥ×S +

M∑
k=0

jkνk −
∞∑

k=M

V̂ ×S Ψ̂k

)
ρj(t)

+

M∑
k=0

V̂ ×S ρj+k
(t) + j0Θ̂−ρj−0

(t) + j1Θ̂+ρj−1
(t)

+

M∑
k=2

jkνkΨ̂kρj−k
(t)

= Lρj(t), (17)

where

Ψ̂k =
4η

~β
γω2

0

(ω2
0 + ν2k)2 − γ2ν2k

V̂ ×S , (18)

Θ̂± =
ηω2

0

2ζ

{
∓V̂ ◦S ± coth

(
~β
2

(
∓ζ + i

γ

2

))
V̂ ×S

}
,(19)

and V̂ ×S ρ = [V̂S , ρ] denotes the commutator of the bath

coupling operator and the density matrix and V̂ ◦S ρ =

{V̂S , ρ}, the anti-commutator.35

The ADOs are identified by the (M + 1)-dimensional
vectors j = (j0, . . . , jk, . . . , jM ) where the elements, jk,
are integer multipliers of each Matsubara frequency. The
true reduced density matrix of the system corresponds
to ρ0, with all coefficients equal to zero. The hierar-
chical propagator connects the ADOs through the terms
involving j± = (j0, . . . , jk ± 1, . . . , jM ), accounting for
system-bath correlations which enable memory effects to
be incorporated into the dynamical evolution.37

The hierarchy is terminated using a convergence pa-
rameter, ξ, beyond which the evolution is assumed to
be within the Markovian limit.36,41 The convergence pa-
rameter determines the number of Matsubara frequencies
via,

2(M + 1)π

~β
> ξ, (20)

and the hierarchy depth according to,

M∑
k=0

jk|Re(νk)| > ξ. (21)

As discussed by Dijkstra and Prokhorenko, this trun-
cation scheme is more efficient than previous methods as
long as ξ is larger than the energy scales of the system,
because ADOs in directions with larger ν are terminated
more quickly, which reduces the total number of ADOs
while retaining accuracy.36 Terminating ADOs are prop-
agated using the approximation,

ρ̇j(t) ' −

(
i

~
Ĥ×S + i(j0 − j1)ζ −

∞∑
k=M

V̂ ×S Ψ̂k

)
ρj(t),

(22)
where the sum to infinity is truncated at a suitably large
value.35
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The above HEOM can also be used for the overdamped

case, when 2ω0 � γ and ζ = i
√

γ2

4 − ω
2
0 , but can be

simplified via a change of the spectral density.1 An over-
damped Brownian oscillator has the Debye spectral den-
sity,

J(ω) = 2η
ωΛ

ω2 + Λ2
, (23)

which concentrates the greatest coupling strength at
lower frequency phonon modes, dominated by a peak at,

Λ =
ω2
0

γ
=

1

τc
, (24)

which defines the correlation time, τc, of the bath corre-
lation function, equal to the time required for the bath
to return to equilibrium upon perturbation.1,10

In order to investigate non-Markovianity, we assume
that the time scale for the system to return to equilib-
rium, TS is longer than that of the bath, but both are
shorter than the natural recurrence of the bath oscilla-
tions, τR, such that τc � TS � τR. This is true for con-
tinuous spectral densities, where the great range of fre-
quencies increases τR.10 When the bath correlation time
is much shorter than the system time scale, τc � TS ,
information transferred to the bath degrees of freedom
is quickly dissipated and the evolution approximately
Markovian. But as the correlation time increases, ap-
proaching the system time scale, τc ≈ TS , there is greater
opportunity for non-Markovian information transfer back
and forth between the system and bath.

In the overdamped case, the solution to the correlation
function remains the sum of exponential terms, as in eq.
10, where,

ν0 = Λ, (25)

νk =
2πk

~β
, (26)

c0 = ηΛ

(
cot

(
~βΛ

2

)
− i
)
, (27)

ck =
4ηΛ

~β

(
νk

ν2k − Λ2

)
, (28)

and the hierarchical propagator has the form,36,41

ρ̇j(t) = −

(
i

~
Ĥ×S +

M∑
k=0

jkνk

)
ρj(t)− i

M∑
k=0

V̂ ×S ρj+k
(t)

−i
M∑
k=0

jk

(
ckV̂Sρj−k

(t)− c∗kρj−k (t)V̂S

)
−

(
2η

~βΛ
− η cot

(
~βΛ

2

)
−

M∑
k=1

ck
νk

)
V̂ ×S V̂

×
S ρj(t)

= Lρj(t). (29)

This hierarchy is terminated as before, where terminating
ADOs are propagated using the standard von Neumann

form,

ρ̇j(t) ' −
i

~
Ĥ×S ρj(t). (30)

The bath correlation time, τc, creates two additional
limits within the overdamped case, determined by the
dimensionless parameter ∆ · τc, valid in the high temper-
ature limit of kBT � ~Λ.1 Short correlation times com-
pared with the fluctuation amplitude produce the homo-
geneous limit, ∆ · τc � 1, where the system-bath inter-
action is identical across the entire ensemble.38 Whereas
long correlation times produce the inhomogeneous limit,
∆ · τc � 1, where a slower return to equilibrium enables
the detection of differences within the system-bath inter-
action across the ensemble.7 These have noticeable effects
on spectral lineshape, as discussed in section IV.

Here we set η̃ = 20 cm−1, such that ∆̃ = 91.33 cm−1, at
300 K. Note that we will consistently use the tilde to de-
note conversion of a parameter to wavenumbers such that
η̃ = η(2πc)−1 etc. This small reorganisation energy cor-
responds to a weak displacement, with a Huang-Rhys fac-
tor of S = η/ω0 = 0.04. The range of damping strengths
used in these simulations are presented in table I, along
with their respective dissipation/dephasing rates, Λ, cor-
relation times, τc, and ∆ · τc values for the overdamped
cases. Increasing the damping strength decreases the dis-
sipation rate, slowing the system-bath interactions and
increasing the correlation time, and shows a progression
from the underdamped, to the homogeneous overdamped
and finally to the inhomogeneous overdamped limits.

γ̃ /cm−1 Λ(2π)−1 /fs−1 τc /fs ∆ · τc
50 0.150 7 -

300 0.025 40 -

1750 0.004 234 0.64

2750 0.003 367 1.00

8200 0.001 1094 3.00

TABLE I. Damping strengths, dissipation rates and correla-
tion times used, for η̃ = 20 cm−1 such that ∆̃ = 91.33 cm−1

at 300 K. ∆ · τc given for overdamped environments only.

To calculate N for each damping strength, we com-
pare the dynamics of the system with and without exci-
tation due to a Gaussian laser pulse. Adopting the semi-
classical approximation for a real laser field, the system-
field interaction Hamiltonian is given by,42,43

ĤSF (t) = −µ̂ · E(r, t) (31)

= −µ̂ · (χE(t− τp) exp(−iωt+ ikr)) + c.c.

The total electric field, E(r, t), is defined in terms of its
frequency, ω, and associated wavevector, k, the electric
field strength, χ, and the field envelope, E(t−τp), centred
at τp, which is assumed to be Gaussian,

E(t− τp) = exp

(
−(t− τp)2

2ς2

)
, (32)
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with FWHM = 2
√

2 ln 2ς.
The system density matrix is initialised with the entire

population in the ground electronic state,

ρ(t = 0) = |g〉〈g| =
(

1 0
0 0

)
, (33)

and is then propagated for 2.05 ps to establish system-
bath correlations, with ξ̃ = 5000 cm−1, so that the con-
vergence parameter is sufficiently large. The laser pulse
is introduced by adding eq. 31 into the system Hamilto-
nian (eq. 4) during this evolution, with the pulse centred
at τp = 2 ps. When the pulse has ended (< 50 fs after τp),
the ADOs are propagated for a further 2 ps, providing the
states which are used in the trace distance calculations.
Identical laser pulses are used for all bath conditions,
with the frequency set to be resonant with the frequency
of the system, ωeg, and χ = 103 V m−1. The two series
of states for which the trace distance are calculated cor-
respond to different FWHM of the laser pulse, where ρ1
has a FWHM of 0 fs, corresponding to no excitation, and
ρ2 has a FWHM of 20 fs, causing significant excitation in
the system.

Linear and 2D spectra are calculated using the stan-
dard response function approach, as detailed in Appendix
A, with similarly correlated initial conditions, represen-
tative of experimental measurements where the system-
bath correlations are well established. The spectra are
calculated in the impulsive limit in order to consider the-
ory where the measurable non-Markovianity can be com-
pared with ideal spectra, free from unwanted effects of a
finite pulse shape.

IV. RESULTS AND DISCUSSION

The trace distance, D(ρ1, ρ2), for the range of damping
strengths presented in table I is shown in figure 2 (top).
As in the example case of figure 1, as the excited pop-
ulation of ρ2 dissipates energy to the bath, the ground
state population increases, causing ρ1 and ρ2 to become
less distinguishable and the trace distance to decrease.
This description is consistent with the overall negative
gradient observed for D(ρ1, ρ2) in figure 2.

However, the decrease in trace distance is accompa-
nied by significant oscillations which decay over time, as
shown by the flux, σ, in figure 3. As discussed in section
II, positive flux corresponds to the non-Markovian return
of information from the bath to the system, which is in-
tegrated in the BLP measure. Figure 2 (bottom) shows
the cumulative integration of the positive flux, where the
maximum value obtained is equal to N .

From figures 2 and 3, we observe that the γ̃ = 50 cm−1

and γ̃ = 300 cm−1 underdamped baths result in a slower
decrease in the trace distance, with small but long-lived
oscillations. This suggests that the underdamped mo-
tion enables the prolonged feedback of information from
the bath to the system, with the maximum amount of
measurable non-Markovianity being achieved over several
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FIG. 2. (Top) Trace distance, D(ρ1, ρ2), and (bottom) cumu-
lative integration of the positive flux, with maximum equal to
N , for the each of the damping strengths in table I.

picoseconds. There is even evidence of the wider under-
damped oscillations superimposed in the positive flux,
most clearly seen for γ̃ = 50 cm−1. As the integrated
flux for γ̃ = 300 cm−1 tends towards a plateau within
the time frame of our simulations, whilst γ̃ = 50 cm−1

does not, it is clear that for an underdamped bath, in-
creasing the damping strength decreases the maximum
measurable non-Markovianity, N .

For the remaining overdamped baths, we observe no-
ticeably different trends. Firstly, the oscillations in the
trace distance are larger and decay rapidly, within the
first few hundred femtoseconds. This suggests a sudden
feedback of information from the bath to the system, fol-
lowed by a long period of irreversible Markovian transfer
from the system to the bath. This is consistent with a
sudden reorganisation of the solvent molecules upon exci-
tation of the solute, followed by the relaxation of the ex-
cited state. Secondly, as the damping strength increases
from γ̃ = 1750 cm−1 to γ̃ = 8200 cm−1, the measured
non-Markovianity N also increases, achieving a plateau
in the integrated flux in a shorter time. This suggests
there is greater non-Markovian feedback for the inhomo-
geneous overdamped γ̃ = 8200 cm−1 than the homoge-
neous overdamped γ̃ = 1750 cm−1.

Therefore, figure 2 shows that by increasing the damp-
ing strength the maximum non-Markovianity is reached
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FIG. 3. Postive flux of the trace distance shown in figure 2,
for each of the damping strengths in table I.

in a shorter time. This can be seen in figure 3 by the
more rapid decay of positive information flux, particu-
larly for the highly damped baths. The magnitude of
maximum non-Markovianity, however, is more compli-
cated. From figure 2 it is clear that N is largest in the
underdamped limit due to recurrence of information be-
ing transferred back into the system from the bath over
a prolonged period, as seen in figure 3. Increasing the
damping then leads to a decrease in N for underdamped
baths. But, interestingly, in the case of overdamped
baths, we see that N increases as the damping increases
from more homogeneous to more inhomogeneous envi-
ronments. This suggests that broadening from an inho-
mogeneous environment is associated with greater non-
Markovian effects than homogeneous, but also, that po-
tentially even greater non-Markovian effects are involved
in underdamped environments, but that the total effect
requires significantly longer to develop. The measured
values of N after 2 ps are presented in table II.

This change in non-Markovianity is consistent with

γ̃ /cm−1 ∆ · τc N FWHM (±1 ) /cm−1

50 - 0.147 4

300 - 0.104 19

1750 0.64 0.052 110

2750 1.00 0.063 144

8200 3.00 0.074 196

TABLE II. Measured N and linear absorption spectrum
FWHM for each damping strength in table I, where η̃ =
20 cm−1, such that ∆̃ = 91.33 cm−1 at 300 K for all cases.
∆ · τc given for overdamped environments only.

and can be related to the observed spectral lineshape in
linear and 2D spectroscopy. Linear absorption spectra for
each of the damping strengths are presented in figure 4.
The γ̃ = 50 cm−1 underdamped bath shows a sharp peak
at the fundamental transition frequency, ω̃eg, with a vi-
bronic peak at ω̃eg+ ω̃0, which is significantly less intense
due to the small Huang-Rhys factor of S = 0.04. As the
damping increases to γ̃ = 300 cm−1, the vibronic peak
is no longer visible and the fundamental peak broadens
with a loss of intensity.
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ν̃ /cm−1

0
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80

100
I(
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/a
rb

.
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1000

1500

2000

γ̃=50 cm−1

γ̃=300 cm−1

γ̃=1750 cm−1

γ̃=2750 cm−1

γ̃=8200 cm−1

FIG. 4. Calculated linear absorption spectra for each of the
damping strengths in table I.

The appearance of the vibronic peak can be related
to the long-lived oscillations in the trace distance and
prolonged non-Markovian feedback for the underdamped
baths. As the vibrational mode has been formally sub-
sumed within the bath degrees of freedom through the
canonical transformation, the observation of the vibronic
peak indicates that the weak damping has enabled the
spectroscopy to probe not only the system, but also the
bath modes, which can only be possible via a reversible
transfer of information. As the damping increases, the
vibronic peak becomes much less intense, to the point of
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absence, as the feedback of information is diminished.
As the damping continues to increase to the over-

damped limit, the intensity of the fundamental peak de-
creases further and the peak broadens from the homoge-
neous to the inhomogeneous limits. The FWHM of the
fundamental peak for each damping strength is also listed
in table II.

Recalling that the overdamped baths used in these sim-
ulations obey the high temperature limit, kBT � ~Λ, in
the homogeneous case, ∆ · τc � 1, the absorption spec-
trum has a Lorentzian profile,

I(ω) =
Γ

(ω − ωeg)2 + Γ2
, (34)

with FWHM of 2Γ = 2∆2τc.
1,44 This corresponds to

the motional narrowing limit, where the short correla-
tion time of the bath leads to an averaging across the
ensemble.15 For γ̃ = 1750 cm−1 with ∆ · τc = 0.64, this
predicts a FWHM of 116 cm−1, which agrees with the
measured FWHM in table II, where the difference sug-
gests that ∆ · τc is too large in this case to fit the ideal
homogeneous lineshape.

In the inhomogeneous case, ∆ · τc � 1, the absorption
spectrum has a Gaussian profile,

I(ω) = (2π∆2)−
1
2 exp

[
− (ω − ωeg)2

2∆2

]
, (35)

with FWHM of 2
√

2 ln 2∆, directly proportional to the
fluctuation amplitude.1,44,45 The measured FWHM for
the inhomogeneous γ̃ = 8200 cm−1 with ∆ · τc = 3.00
demonstrates a tend towards this limit of 215 cm−1.

The long correlation times associated with the inho-
mogeneous limit cause the bath motion to be effectively
static with respect to the time scale of the system. In this
way, the Gaussian profile for the linear absorption spec-
trum resembles the normal distribution of transition fre-
quencies present across the ensemble due to the stochas-
tic bath interactions. This implies a maximum amount
of information about the bath is obtained, as all localised
inhomogeneities contribute to the lineshape. In contrast,
the short correlation times of the homogeneous limit re-
sult in seemingly identical interactions of the system and
bath across the ensemble, leading to an averaging which
loses this information about the bath, and produces the
motional narrowing limit.15 This agrees with the trends
observed in figures 2 and 3, where N is greatest and ob-
tained fastest for the static, inhomogeneous limit. Here
the maximum information of the bath is returned to the
system almost instantaneously due to its slow variation.
As the correlation time of the bath decreases towards the
homogeneous limit, any information transferred from the
system to the bath is dissipated more quickly, with less
opportunity for non-Markovian feedback. This decreases
the measurable non-Markovianity, as the interactions be-
come increasingly indistinguishable and Markovian.

Early stochastic models assumed white noise, which
corresponds to an entirely flat spectral density.11,14 This

produces a correlation function which is a delta function
of time, representing an instantaneous return to equilib-
rium for the bath, and the true Markovian limit.15 Our
results demonstrate the superiority of HEOM methods in
correctly accounting for coloured spectral densities and
the resulting non-Markovian effects, identifying measur-
able non-Markovianity even as the damping approaches
the homogeneous limit.37,46

These non-Markovian effects are also observed using
2D spectroscopy, which separates inhomogeneous and
homogeneous broadening onto the diagonal and anti-
diagonal of the correlation maps, respectively. Figure
5 shows the 2D spectra for population times of T =
0−300 fs for the γ̃ = 300 cm−1 underdamped bath, identi-
fied as γ < ω0, and the three overdamped baths, labelled
with their ∆ · τc values. For T = 0 fs, a very intense,
narrow peak is observed in the underdamped spectrum,
whereas the overdamped spectra are much weaker, with
significant broadening. Transitioning from the homoge-
neous limit of ∆ ·τc = 0.64 to the inhomogeneous limit of
∆ · τc = 3.00, the diagonal peak width increases and the
intensity decreases, reproducing the Lorentzian to Gaus-
sian broadening observed in the linear spectra. However,
the elongated diagonal width compared with the homo-
geneous anti-diagonal width in each of the overdamped
environments confirms the presence of inhomogeneous
broadening, even in the ∆ · τc = 0.64 case. The perfectly
symmetrical peak shows that no inhomogeneous broad-
ening is observed in the underdamped environment.

On increasing the population time, spectral diffusion
causes the diagonal width to decrease until it matches
the anti-diagonal width. The time scale of spectral diffu-
sion is determined by the correlation time and is a useful
demonstration of the lifetime of memory effects. Whilst
the population time is less than the correlation time,
T < τc, the inhomogeneous distribution of system-bath
interactions within the ensemble contributes a series of
Lorentzian peaks along the diagonal, which produce the
elongated Gaussian shape when summed.7,8 As the pop-
ulation time increases, system-bath correlations are lost
as the correlation function decays, decreasing this inho-
mogeneous broadening and leaving a more rounded peak
dominated by the homogeneous lineshape.38,47,48

The decay in the correlation function is directly related
to the decrease in ellipticity, E, of the peaks in the 2D
spectra, which compares the width of a Gaussian fitted
to the diagonal of the peak, ςD, with that of the anti-
diagonal, ςA,49–51

E =
ς2D − ς2A
ς2D + ς2A

. (36)

Figure 6 shows that the ellipticity of the three over-
damped baths follows an exponential decay with popu-
lation time and that the slower decay for inhomogeneous
baths is accompanied by increasing N . The homoge-
neous ∆ · τc = 0.64 environment has a short correlation
time such that the ellipticity has the most rapid decay
and any elongation of the 2D peak due to inhomogeneous
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FIG. 5. Absorptive 2D spectra for population times T = 0− 300 fs for the γ̃ = 300 cm−1 underdamped bath, labelled γ < ω0,
and the three overdamped baths, identified by their ∆ · τc values, as per table I, normalised to the maximum of ∆ · τc = 0.64
at T = 0 fs.

broadening has depleted within 300 fs. The much longer
correlation time of the inhomogeneous ∆ · τc = 3.00 en-
vironment has a much slower decay in ellipticity.

Comparison with the results of the non-Markovianity
measure for the overdamped environments in figures 2
and 3 suggests that the 2D lineshape can be interpreted
in an identical manner to the linear spectra. As before,
the short correlation time and rapid dissipation of the
homogeneous bath reduce the feedback from the bath
to the system, limiting any elongation due to inhomo-
geneous broadening and resulting in swift diffusion to a
less informative 2D Lorentzian lineshape. In contrast,
the much slower inhomogeneous bath, with much greater
non-Markovian feedback, leads to significant elongation
of the peak into a Gaussian distribution, with much
slower diffusion, representing our increased knowledge of
the bath degrees of freedom. The observation of greater
N for the inhomogeneous bath in figure 2 is also related
to the greater initial elongation of the peak, and thus

larger E, at T = 0 fs for ∆ · τc = 3.00 compared with
∆ · τc = 0.64 in figure 5.

Ideally, the trends discussed above would be confirmed
by performing additional simulations using parameters
which further demonstrate the transitions between the
damping limits. Unfortunately, the numerical integration
proved insufficiently stable to traverse the critical damp-
ing region between the underdamped and overdamped
limits. Similarly, identifying a suitable parameter set
which could access all the limits on changing the damp-
ing strength alone presented a significant challenge. This
is expected, however, as it is uncommon for a partic-
ular mode frequency with a set reorganisation energy
to appear as both an underdamped and overdamped
mode in nature. Underdamped modes are typically high
frequency intramolecular modes with large reorganisa-
tion energies, whilst overdamped modes are lower fre-
quency intermolecular modes with small reorganisation
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FIG. 6. Ellipticity, E, of the absorptive 2D spectra against the measured non-Markovianity, N , for the three overdamped
baths, identified by their ∆ · τc values, for (left) T = 0, 50 and 100 fs and (right) T = 0− 400 fs, sampled at 10 fs intervals.

energies.34,52,53 Hence why an intermediate frequency
was used in our simulations.

V. CONCLUSION

Here we have combined the open quantum system dy-
namics of a two level system coupled to a harmonic
oscillator bath with metrics from quantum information
theory to quantify the non-Markovianity involved in the
system-bath interaction under different damping limits.
We have presented separate hierarchical equations of mo-
tion methods for underdamped and overdamped environ-
ments, which adopt the latest, most efficient, termination
technology, and have applied them to the relaxation dy-
namics of a simple system pumped by an external laser
field and calculation of linear and 2D spectra.

This study shows that on decreasing the damping rate
for a Brownian oscillator of fixed mode frequency and re-
organization energy, the non-Markovianity measure, N ,
reaches a maximum more slowly. Furthermore, the max-
imum value is greater as we move towards the under-
damped limit because the non-monotonic slowly decaying
correlation functions provide a high flux of information
feedback from the bath to the system. This is not the
case for the monotonically decaying correlation functions
associated with overdamped baths, where information is
rapidly lost from the system with little recurrence. More
concisely stated, underdamped environments have the po-
tential for greater non-Markovian effects, but in general
it takes a much longer time for the maximal amount of
information to return to the system from the bath.

These results have then been compared with the

changes in lineshape of the linear and 2D spectra of
these systems, analysing the spectral features in terms
of the information flow between the system and its bath.
We quantitatively link non-Markovian effects, associated
with N , to inhomogeneous broadening and ellipticity
such that this broadening can be directly interpreted as
feedback of information from the bath to the system.
This demonstrates that environmental signatures emerge
in spectral lineshape as a result of information flow from
the bath back into the system.
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Appendix A: Linear and 2D Spectroscopy Calculations

The linear and non-linear spectra are calculated using
the standard response function method in the impulsive
limit.1,38 The linear absorption spectrum, σA(ω), is ob-
tained by Fourier transformation of the first order molec-
ular response function, R(1)(t),

σA(ω) =

∫ ∞
0

dteiωtiR(1)(t), (A1)
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R(1)(t) =
i

~
Tr
(
µ̂Ĝ(t, t0)µ̂×ρ(−∞)

)
, (A2)

where ρ(−∞) is the equilibrium density matrix and

Ĝ(t1, t0) = eL(t1−t0) is the hierarchical propagator (eq.
17 and 29).15,16,34 The equilibrium density matrix is ob-
tained by propagating the HEOM for 2 ps in order to

establish initial correlations in the ADOs due to system-
bath coupling.54 The dipole moment operator is applied
to all ADOs contained within ρ(−∞).34

Similarly, distinguishing the raising (µ̂→) and lowering
(µ̂←) contributions to the dipole moment operator, µ̂� =

σ∓, the rephasing, R
(3)
R , and non-rephasing, R

(3)
NR, third

order molecular response functions are given by,54

R
(3)
R (τ, T, t) = −Tr

(
µ̂Ĝ(t+ T + τ, T + τ)

i

~
µ̂×→Ĝ(T + τ, τ)

i

~
µ̂×→Ĝ(τ, t0)

i

~
µ̂×←ρ(−∞)

)
, (A3)

R
(3)
NR(τ, T, t) = −Tr

(
µ̂Ĝ(t+ T + τ, T + τ)

i

~
µ̂×→Ĝ(T + τ, τ)

i

~
µ̂×←Ĝ(τ, t0)

i

~
µ̂×→ρ(−∞)

)
. (A4)

2D spectra are then obtained as the double Fourier
transformation of the third order response function for
each component,

SR(ωτ , T, ωt) =

∫ ∞
0

dt

∫ ∞
0

dτe−iωττeiωttiR
(3)
R (τ, T, t),

(A5)

SNR(ωτ , T, ωt) =

∫ ∞
0

dt

∫ ∞
0

dτeiωττeiωttiR
(3)
NR(τ, T, t),

(A6)
which produce the absorptive spectrum when
summed,34,37

SA = Re(SR + SNR). (A7)
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45O. Kühn, V. Rupasov, and S. Mukamel, J. Chem. Phys. 104,

http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
http://dx.doi.org/10.1021/ar9000444
http://dx.doi.org/10.1021/acs.accounts.7b00369
http://dx.doi.org/ 10.1063/1.5083966
http://dx.doi.org/ 10.1063/1.5083966
http://dx.doi.org/10.1021/ar900227m
http://dx.doi.org/10.1021/ar900227m
http://dx.doi.org/10.1021/jp0219247
http://dx.doi.org/10.1021/jp0219247
http://dx.doi.org/ 10.1016/j.bbabio.2018.12.006
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1103/RevModPhys.89.015001
http://dx.doi.org/10.1143/JPSJ.58.101
http://dx.doi.org/10.1103/PhysRevB.74.024303
http://dx.doi.org/10.1103/PhysRevB.74.024303
http://dx.doi.org/10.1103/PhysRevA.41.6676
http://dx.doi.org/10.1143/JPSJ.75.082001
http://dx.doi.org/10.1063/1.4916647
http://dx.doi.org/10.1063/1.3428674
http://dx.doi.org/10.1021/ct500629s
http://dx.doi.org/10.1021/ct500629s
http://dx.doi.org/10.1002/andp.201500148
http://dx.doi.org/10.1002/andp.201500148
http://dx.doi.org/ 10.1002/jcc.25354
http://dx.doi.org/ 10.1103/RevModPhys.88.021002
http://dx.doi.org/ 10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1098/rsta.2011.0203
http://dx.doi.org/10.1098/rsta.2011.0203
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1209/0295-5075/92/60010
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1146/annurev.physchem.41.1.647
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1103/RevModPhys.50.221
http://dx.doi.org/10.1209/0295-5075/118/20005
http://dx.doi.org/10.1209/0295-5075/118/20005
http://dx.doi.org/10.1103/PhysRevA.82.042103
http://dx.doi.org/10.1103/PhysRevA.82.042103
http://dx.doi.org/ 10.1103/PhysRevA.84.032118
http://dx.doi.org/ 10.1103/PhysRevA.84.032118
http://dx.doi.org/10.1088/1367-2630/19/1/013007
http://dx.doi.org/10.1088/1367-2630/19/1/013007
http://dx.doi.org/10.1063/1.4766931
http://dx.doi.org/10.1143/JPSJ.78.073802
http://dx.doi.org/10.1143/JPSJ.78.073802
http://dx.doi.org/10.1063/1.4997433
http://dx.doi.org/10.1063/1.4997433
http://dx.doi.org/10.1016/j.chemphys.2007.10.037
http://dx.doi.org/10.1017/CBO9780511675935
http://dx.doi.org/10.1017/CBO9780511675935
http://dx.doi.org/10.1063/1.4917025
http://dx.doi.org/10.1063/1.4917025
http://dx.doi.org/10.1143/JPSJ.81.063301
http://dx.doi.org/10.1143/JPSJ.81.063301
http://dx.doi.org/10.1021/acs.jpca.8b03339
http://dx.doi.org/10.1063/1.2062188
http://dx.doi.org/10.1063/1.2062188
http://dx.doi.org/ 10.1016/j.cplett.2016.11.030
http://dx.doi.org/ 10.1016/j.cplett.2016.11.030
http://dx.doi.org/10.1063/1.451625
http://dx.doi.org/10.1063/1.451625
http://dx.doi.org/10.1063/1.471393


12

5821 (1996).
46A. Ishizaki and Y. Tanimura, J. Phys. Soc. Jpn. 74, 3131 (2005).
47A. Tokmakoff, J. Phys. Chem. A 104, 4247 (2000).
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