Shabut, Antesar M., Tania, Marzia Hoque, Lwin, Khin T., Evans, Benjamin A. ORCID: https://orcid.org/0000-0001-6849-9758, Yusof, Nor Azah, Abu-Hassan, Kamal J. and Hossain, M. A. (2018) An intelligent mobile-enabled expert system for tuberculosis disease diagnosis in real time. Expert Systems with Applications, 114. pp. 65-77. ISSN 0957-4174
Preview |
PDF (Published manuscript)
- Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
This paper presents an investigation into the development of an intelligent mobile-enabled expert system to perform an automatic detection of tuberculosis (TB) disease in real-time. One third of the global population are infected with the TB bacterium, and the prevailing diagnosis methods are either resource-intensive or time consuming. Thus, a reliable and easy–to-use diagnosis system has become essential to make the world TB free by 2030, as envisioned by the World Health Organisation. In this work, the challenges in implementing an efficient image processing platform is presented to extract the images from plasmonic ELISAs for TB antigen-specific antibodies and analyse their features. The supervised machine learning techniques are utilised to attain binary classification from eighteen lower-order colour moments. The proposed system is trained off-line, followed by testing and validation using a separate set of images in real-time. Using an ensemble classifier, Random Forest, we demonstrated 98.4% accuracy in TB antigen-specific antibody detection on the mobile platform. Unlike the existing systems, the proposed intelligent system with real time processing capabilities and data portability can provide the prediction without any opto-mechanical attachment, which will undergo a clinical test in the next phase.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | image processing,machine learning,decision support system,colourimetric tests,sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being |
Faculty \ School: | Faculty of Medicine and Health Sciences > Norwich Medical School |
UEA Research Groups: | Faculty of Medicine and Health Sciences > Research Groups > Gastroenterology and Gut Biology Faculty of Medicine and Health Sciences > Research Centres > Metabolic Health Faculty of Medicine and Health Sciences > Research Groups > Pathogen Biology Group |
Depositing User: | LivePure Connector |
Date Deposited: | 06 Jul 2018 12:30 |
Last Modified: | 18 Jan 2025 00:53 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/67542 |
DOI: | 10.1016/j.eswa.2018.07.014 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |