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a b s t r a c t 

This paper presents an investigation into the development of an intelligent mobile-enabled expert sys- 

tem to perform an automatic detection of tuberculosis (TB) disease in real-time. One third of the global 

population are infected with the TB bacterium, and the prevailing diagnosis methods are either resource- 

intensive or time consuming. Thus, a reliable and easy–to-use diagnosis system has become essential to 

make the world TB free by 2030, as envisioned by the World Health Organisation. In this work, the chal- 

lenges in implementing an efficient image processing platform is presented to extract the images from 

plasmonic ELISAs for TB antigen-specific antibodies and analyse their features. The supervised machine 

learning techniques are utilised to attain binary classification from eighteen lower-order colour moments. 

The proposed system is trained off-line, followed by testing and validation using a separate set of images 

in real-time. Using an ensemble classifier, Random Forest, we demonstrated 98.4% accuracy in TB antigen- 

specific antibody detection on the mobile platform. Unlike the existing systems, the proposed intelligent 

system with real time processing capabilities and data portability can provide the prediction without any 

opto-mechanical attachment, which will undergo a clinical test in the next phase. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Tuberculosis (TB) is a communicable disease, infecting one third

f the world’s population. In 2015, 1.8 million TB-related deaths

ere reported ( Centers for Disease Control and Prevention, 2017 ).

n the other hand, every year about 244 million migrants cross

nternational borders ( Department of Economic and Social Af-

airs, 2016 ). The carriage of TB in a mobile population is a global

hallenge, which is a particular concern for the border agencies

 Posey, Marano, & Cetron, 2017 ). However, TB is curable with ap-

ropriate early diagnosis. The most common diagnosis procedure

or TB is a skin test (Mantoux test) or a blood test (Centers for

isease Control and Prevention.; NHS, 2017 ). Despite many com-

ercial test schemes, there is still a need for an easy-to-use, ef-

ective and feasible point-of-care (POC) TB diagnosis tool, partic-
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larly for the remote community where there are very limited or

o diagnostic facilities. Such a tool should possess the following

eatures: low cost mobile solution, anytime anywhere access, low

nergy consumption, ease of use, fast and automatic identification

f TB. 

The World Health Organization (WHO) prefers diagnos-

ic tools which are inexpensive, disposable and easy-to-use

 Khademhosseini, 2011; Wang, Xu, & Demirci, 2010 ). A mobile-

nabled expert system can address all these features. Due to the

igh penetration rate of mobile phones ( GSMA Intelligence, 2017 ),

uch system can reach a wider population, especially those who

ave limited access to advanced laboratory facilities. Incorporation

f the mobile phone can not only facilitate an easy and automatic

olour detection but also can enable diagnostic disease decision us-

ng machine learning techniques. 

In order to establish a widespread application, the mobile-

nabled expert systems should possess minimum hardware re-

uirements. To eliminate the necessity of the opto-mechanical at-

achment, one requires advanced image processing techniques. The
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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difficulty of choosing the right image processing technique for a

mobile platform includes the balance between accuracy, robustness

and computation cost. 

This work aims to develop such a system to provide quali-

tative TB diagnosis results on the mobile platform in real time.

The main contribution of the paper is to ‘automatically’ detect TB-

specific antibodies by analysing digital images (i.e. ELISA images)

with colour signals produced by biosensor technology. The plas-

monic ELISA tests were conducted in Universiti Putra Malaysia. The

proposed system does not require any additional hardware such

as an opto-mechanical attachment to enhance the colour detec-

tion or guide the illumination source, which makes the system the

most conveniently portable. Utilising an intelligent image process-

ing algorithm, the presented system robustly separates the samples

from the assay plate and extracts the features, and within a few

seconds the system predicts the class label via a machine learn-

ing algorithm with high accuracy and ease of use. On a trained

model, when a user provide an image to test, the system will re-

quire to process the image. Sending this user input directly to the

cloud may present certain uncertainty and degradation of the im-

age quality in resource-limited settings. A local analysis can enable

TB testing facility for 24/7 even in the remote areas where inter-

net connection is not available or very weak to send the images

to the server, conduct the analysis, and send the result back to the

smartphone. Although the proposed system is a native application

to provide anytime-anywhere access, the presented system can be

integrated to a server. 

2. Literature review 

2.1. Computational systems for TB-detection 

To the best of authors’ knowledge, there is no existing mo-

bile, desktop or server based system for plasmonic ELISA based de-

tection of TB antigen-specific antibodies. In literature, only a few

studies employed machine learning techniques to assist in the di-

agnosis and monitoring of TB to offer a low-cost, simple, rapid and

portable platform. Tracey et al. (2011) utilised acoustic signals to

track the recovery of pulmonary tuberculosis patients. The mul-

tilayer perceptron (MLP) showed 88.2% accuracy for ambulatory

cough analysis. 

Osman, Mashor, and Jaafar (2010) proposed a tuberculosis bac-

teria detection technique from tissue sample by Ziehl-Neelsen

staining method. The prepared sample image from an optical mi-

croscope was segmented by moving k-mean clustering for tubercu-

losis bacteria extraction. Both RGB and C-Y colour were utilised to

acquire a robust and improved segmentation under various stain-

ing condition. The hybrid multilayered perceptron network (HMLP)

selected the features among the geometrical features of Zernike

moments to detect tuberculosis bacteria. The result showed 98.0%,

100% and 96.19% of accuracy, sensitivity and specificity respectively

to find the class of definite and possible TB. 

Tsai, Shen, Cheng, and Chen (2013) developed colorimetric sens-

ing using unmodified gold nanoparticles and single- stranded de-

tection oligonucleotides for a TB test. The focus of the work was

salt-induced AuNP colourimetric diagnosis for sensing target TB

DNA sequences without multiple PCR cycles to amplify specific

MTB target DNA sequences from extracted sputum or tissue sam-

ples. A smartphone was utilised just to collect the multiple detec-

tion results of colour variation from the concentration on cellulose

paper and transmit the data to the cloud. 

There are commercial and endorsed mobile applications for TB

in the popular application stores e.g. Google Play ( Table 1 , searched

on 21-09-2017) and Apple app store. When it comes to diagnosis,

the applications are for screening purpose only ( Interactive Health

Solutions, 2016a, 2017 ). These applications store the screening data
ia the OpenMRS server. Either the user needs to insert the an-

wers to a series of questions or the lab test results have to be

anually inserted by the user or clinician. The available applica-

ions can ensure the data portability ( Table 1 ) and in some cases

iagnostic decision ( Open Medicine Project, 2014 ), however they

ack automation to produce a diagnostic result from the specimen.

hus, there is a need for a system that does not require any ad-

itional hardware e.g. a plate reader and can produce laboratory

cale test results. 

.2. Image processing on mobile platform 

An image processing based automatic system to be imple-

ented on mobile platform firstly requires quality assessment

nd size reduction of the image. The quality assessment of the

mage will increase the accuracy of the system. The reliability

ill also increase due to the consistency in the input. The size-

eduction and quantisation will make the system faster. For a mo-

ile enabled decision support system, Bourouis, Feham, Hossain,

nd Zhang (2014) utilised a normalisation function to resize the

etinal images to 32 × 32 pixels before storing 1-dimentional vec-

or of pixel information. Lot of emphasis is provided in literature

nd commercial mobile applications for adjusting environmental

ondition and colour and light exposure correction (US9563824 B2,

017; Wug Oh & Kim, 2017 ). 

The image segmentation algorithms in the literature can be

ainly categorised based on five of the following methods:

istogram thresholding, edge detection, clustering, region-based

nd graph-based methods ( Wang, Wu, Chen, Zheng, & Yang,

016 ). An alternative to segmentation is often carried out e.g.

LISA Plate Reader ( Enzo Life Sciences inc., 2015 ) and AssayColor

 Alidans srl, 2015 ). Both applications use a guideline e.g. grid or

ell structure to ensure a better image from a naïve user. Such a

uideline can help the user to maintain an adequate distance of

he sample from the camera, compromising the flexibility of the

ssay type. In both cases, the well-to-well distance is restricted

ecause of certain assumptions regarding the plate size. Instead

f any intelligent segmentation technique, few works in the litera-

ure ( Mutlu et al., 2017; Ozkan & Kayhan, 2016 ) used cropping. It

s highly discouraged for two reasons: i) it would require cropping

kill from the user, and ii) it reduces the ease of use. 

.3. Colourimetric classification and decision on mobile platform 

After processing the images, the features require analysis to

enerate a diagnostic decision and present it on the mobile plat-

orm. The related works done in the literature are mostly for pa-

er based assays ( Kim, Awofeso, Choi, Jung, & Bae, 2017; Sol-

az et al., 2018 ), which are less complex than the wet chem-

cal assays. A cloud based mobile application was demostrated

o classify peroxide content from mean RGB, HSV and LAB un-

er diverse lighting environments ( Solmaz et al., 2018 ). The least

quares SVM and Random Forest were utilised to provide binary

nd multi-class classification respectively. The maximum accuracy

t training phase (with 10-fold cross-validation) was 95% and on

he mobile platform, it was reduced to 90.3%. On the other hand,

nalysing the colour features e.g. average, mode, median, mean,

nd centroid from the histogram of four colour spaces, the saliva-

lcohol concentration was determined by Linear discriminant anal-

sis (LDA), Support vector machine (SVM) and Artificial neural net-

ork (ANN) ( Kim et al., 2017 ). The accuracy varied for different

lasses. Kim et al. (2017) showed that the stand-alone mobile ap-

lication is two times faster than the server based application. 

There are few mobile applications available for 96 well

nzyme-linked immunosorbent assay (ELISA) based colour de-

ection in the commercial and public app stores e.g. Spotxel®
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Table 1 

TB related mobile applications on the Android platform. 

User Region Aspect Questionnaire Intelligent systems Ref. 

Department of health South Africa Management; TB and HIV diagnostic data 
√ 

X Interactive Health Solutions (2016a) 

Specific users Bangladesh Management 
√ 

X Interactive Health Solutions (2017) 

Mine community South Africa TB screening 
√ 

X Interactive Health Solutions (2016b) 

Patients Pakistan Control TB and drug-resistance 
√ 

X Interactive Health Solutions (2016c) 

Clinicians Global Decision on rapid diagnosis of TB and resistance X X Open Medicine Project (2014) 

Clinicians and patients Cambodia Track lab test result X X Operation Asha (2017) 
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eader ( Sicasys Software GmbH, 2017 ), Enzo ELISA Plate Reader

 Enzo Life Sciences inc., 2015 ) and AssayColor ( Alidans srl, 2015 ).

nzo ELISA Plate Reader ( Enzo Life Sciences inc., 2015 ) and Assay-

olor ( Alidans srl, 2015 ) neither provide any automatic complete

nalysis, nor include any decision support system (DSS) to inter-

ret the colourimetric results. The Spotxel® Reader ( Sicasys Soft-

are GmbH, 2017 ) comprising plate annotation and alignment,

ses powerful noise processing and signal detection techniques.

nstead of intelligent sensing, the application uses a virtual plate

hich can be laid over the plate image. The application expects

he wells to be aligned with the virtual plate. The user is required

o match the corner and centre wells with the grid. The virtual

late or grid can be scaled and rotated. However, aligning the wells

ith the grid requires some image capturing skills, which reduces

he ease of use. The developers also acknowledged the limitations

n the image processing ( Sicasys Software GmbH, 2017 ). The appli-

ation is capable of performing statistical analysis to quantify the

esult. The accuracy of such quantification is yet to be revealed. 

Clearly it is evident from the recent literature and commercial

obile application stores ( Table 1 ), that there is no existing low

ost mobile solution which can benefit the wider population by

nywhere anytime access to perform convenient confirmatory di-

gnosis of TB. To develop such a system, the critical review of the

iterature suggests to us the following findings: 

- A strong image processing technique is required to eliminate

the opto-mechanical attachments. 

- Such an image processing technique has to be computationally

feasible to be executed in the mobile environment. 

- The image processing technique has to be intelligent and ro-

bust for wet chemical analysis. It should also consider powerful

noise filtering techniques. 

- The model needs to be trained off-line before deploying on

the mobile platform. A native application would be faster than

cloud based solutions, can be availed anytime anywhere and

would possess less concern regarding cyber security. 

. Methods 

.1. Data collection 

.1.1. Sample preparation 

The experiments on plasmonic ELISA were mainly conducted

n Universiti Putra Malaysia ( Abuhassan et al., 2017; Tania, Lwin,

buhassan, & Bakhori, 2017 ). However, the TB patient sputum sam-

les were provided by School of Medical Sciences, Universiti Sains

alaysia, Kubang Kerian, Malaysia through their University’s hospi-

al. The fresh sputum sample were delivered to their lab and smear

icroscope analysis were carried out prior to culture method. The

LISA analysis was carried out simultaneously in the same lab. 

For the detection of CFP-10, a 10 kDa secreted antigen from

ycobacterium tuberculosis , we first coated the ELISA plate with

00 μL of CFP-10 in carbonate buffer and then incubated for 1.5 h.

ollowing the period, the plate was washed three times with PBS

H 7.6 and 0.05% Tween-20 (PBST) by tapping it against a clean

aper towel. Now the plate was blocked with 370 μL of PBS con-
aining BSA (PBSA) (1 mg/mL) for 1.5 h. All the antibodies and en-

yme conjugates were diluted in diluent antibody containing PBST

nd 1% BSA. The plate was washed with PBST for three times, and

ept the plate (invert) at 4 °C for 2 h. Now, 100 μL of monoclonal

nti CFP-10 antibody as primary antibody was added to the plate

t 4 °C for 1.5 h. After 1.5 h, the plate was washed with PBST for

hree times and the plate was added with 100 μL of biotinylated

olyclonal secondary antibody and incubated for another 1.5 h at

 °C. The plate then washed three times and 100 μL of catalase-

treptavidin conjugate (v/v 1:20) was pipetted into the plates and

eft for 1.5 h at 4 °C. After the period, the wells in the plate were

ashed three times with PBST, two times with PBS, one time with

eionized water and then dried. Now, 100 μL of hydrogen peroxide

in 1 mM MES, pH 6.5) buffer was pipetted into the wells. Imme-

iately, 100 μL of gold ion solution freshly prepared in 1 mM MES

uffer was added to the wells prepared in 1 mM MES buffer was

dded to the wells at room temperature. At this stage, the GNPs

ormation in the form of coloured solution can be seen and this

an be read with microplate reader at an absorbance of 550 nm.

or the analysis of real samples, the sputum from positive and neg-

tive TB patients were diluted in 4% sodium hydroxide first, and

hen proceeded to the same coating process as mentioned above. 

.1.2. Image acquisition 

The dataset (generated as stated above) contains 252 images

nd 4 videos ( Tania et al., 2017 ); 106 of them, captured with an

Phone 8-megapixel camera without mobile phone holder, were

nitially considered for ( Abuhassan et al., 2017 ). Blurry images,

mages with inadequate camera exposure, observations intended

or biosensor optimisation and the initial experiments where the

olour widely varied from the final representative colours were re-

oved. Finally, 27 images were selected from 22 independent ob-

ervations. Among these images, 13, 3 and 2 images were captured

y Samsung Galaxy J5 Prime (13-MP), iPhone 7 plus (12-MP) and

Phone 6 (8-MP) cameras respectively. The remaining images were

aptured with an iPhone (8-MP camera). The dataset contains im-

ges of 96 wells, which are partially filled, which means the plates

ontain both empty wells in addition to wells filled with sample.

he final selection of 27 images from 22 independent observa-

ions were taken in a laboratory lighting environment. These im-

ges contain 266 samples - 81 of them are positive for TB-specific

ntibody, 181 are negative and three of the samples failed to pro-

uce any indicative result, thus 263 samples were finally selected.

 mobile phone holder (NJS Telescopic Music Record Mobile Phone

Pad iPhone Stand Inc G Clamp Mount 68 G) was used while cap-

uring the image. However, the acquired images vary in terms of

ell size, camera to ELISA plate position, light exposure and mobile

hone. Considering a robust application, this variation is expected

n the real life incoming images. 

Let us assume, the assay plate, A = f (X x ,Y y ,Z z ), where { X , Y } ∈
 

+ and Z ∈ R and Z > 0 . In this work ( Fig. 1 ), X = {1, 2, …, 12} and

 = { A, B , …, H }. For the commercially available 96 well plates X

nd Y will maintain such positions in rows and columns. The space

etween these wells can vary from plate to plate. Thus, the wells

re signified in (x, y, z) coordinates. Each well denoted by w X,Y ∈
 x,y in the plate and s X,Y ∈ w X,Y = sample , i.e. the well is filled with
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Fig. 1. Impact of sample and camera position with respect to ELISA plate. X and Y 

are the length and width of the ELISA plate respectively. Z = volume of sample in 

the well and C p = camera position. 
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the sample. Both shape and depth of the well can vary, depending

on the specification of the assay plate. Due to the dimension of

the well itself, the distance between these wells can differ from

plate to plate. Depending on the biochemical protocol, the amount

of sample to fill these wells can vary as well. All this information

has a direct impact on the imaging. However, the colour of each

sample, s c ( r,g, b ) � = f ( x, y, z ). 

We have maintained the camera position (C p ) parallel to the

A, giving the wells a uniform exposure to the camera. For a static

C p , the distance between C p to each w X,Y is not equal. Thus, the

sample to camera exposure is not equal. In theory, it would make

s c ( r,g, b ) appear as s cn ( r,g, b ). The best exposure would be attained

by the median w X,Y . 

The s c ( r,g, b ) can potentially differ due to the ambient condi-

tions such as temperature, weather and geo-location, and certainly

for the sample itself. However, this work is conducted in the labo-

ratory environment. 

3.2. Image pre-processing and segmentation 

3.2.1. Image pre-processing 

The goal of this work is to provide TB diagnosis on mobile plat-

forms. Thus, this paper intends to circumvent the limited memory

and processing power of the mobile devices, which is why the size

of the images need to be reduced. The acquired images were scaled

i.e. proportionally resized to reduce the processing time. 

After the size reduction, the Gaussian Blur filtering was utilised

as the image enhancement technique. This low pass filter (LPF)

with parabolic amplitude Bode plot detracted the detail of the im-

age by using a Gaussian function on each pixel. 

G ( x, y ) = 

1 

2 πσ 2 
e −

x 2 + y 2 
2 σ2 , (1)

where σ = standard deviation 

In an image, x being the distance from the origin in the hor-

izontal axis, y being the distance from the origin in the vertical

axis, 2D Gaussian or normal distribution can be written as Eq. (1) .

Alternatively, a local Laplacian filter with contrast-limited adaptive

histogram equalization was also implemented in the desktop ap-

plication to evaluate the reformation. 

Most commonly, the images captured by smartphones are in

the RGB format. After smoothing, the image needed to be taken

into a more perceptually linear colour space, LAB. This colour space
ransformation provides the ease to perform Euclidean distance

alculation-based clustering at a later stage. 

.2.2. Image segmentation 

Initially, a number of segmentation methods were imple-

ented such as Otsu ( Otsu, 1979 ), multi-level Otsu ( Liao, Chen,

 Chung, 2001 ), watershed ( Meyer, 1994 ), super pixel ( Ren & Ma-

ik, 2003 ) and k -means ( Forgy, 1965; Lloyd, 1982; Macqueen, 1967 ).

n the previous study ( Abuhassan et al., 2017 ), k -means clustering

howed promising performance, where the number of cluster was

 and the size reduction was minimum. 

The qualitative test determines the presence or absence of a

ubstance. Thus, the decision is in the binary form. For the naked-

ye tests, these binary classes are supposed to be visually distin-

uishable. Therefore, in theory there are only 3 relevant colours:

ackground, foreground containing positive samples and alterna-

ively negative samples. Hence, it can be hypothesised that k = 3

hould provide a perfect segmentation for a qualitative colourimet-

ic test holding both positive and negative samples. However, if the

oreground pixels of positive and negative samples are in two dif-

erent clusters, it would make the sample annotation unnecessarily

omplex and computationally expensive. Thus, it would be desir-

ble to force the clustering method to keep the positive and nega-

ive samples in the same cluster. 

During the segmentation process, the random selection of clus-

er centroid position at initial stage compelled a requirement for

he best cluster persuasion. Thus, after the clustering, a series of

ost-processing techniques were applied. As mentioned in Table 2 ,

hese post-processing techniques include morphological operation

ncompassing Dilation and Erosion followed by object detection.

he morphological transformations on a binary image in most

ases require two inputs: the image and the kernel which identifies

he nature of the operations. The contours were exploited after the

egmentation and morphological transformations for size analysis

nd object detection. 

.3. Feature analysis and classification 

Once the samples (ROI) were separated, the characteristics of

hese samples were analysed. In this paper, the feature analy-

is involves measurement of colour moments. This work includes

asic features necessary to compute any probability distribution

 Sergyan, 2008 ). The framework is illustrated in Fig. 2 . As described

n Abuhassan et al. (2017) , mean, mode, standard deviation, skew-

ess, energy and entropy in L, a and b channel (18 features in total)

ere considered to train the model. 

.4. Mobile-enabled expert system 

In this work, the plasmonic ELISA-based TB detection was de-

loyed on the Android platform. The mobile application was de-

eloped on a Samsung Galaxy S7 edge. The minimum target SDK

s 21 (API level 5). 

The steps outlined in Table 2 were implemented on the An-

roid platform as illustrated in Fig. 3 . Due to convenient function-

lity on the Android platform, OpenCV was utilised to perform the

ata pre-processing i.e. image processing and feature extraction.

he feature values of the segmented, individual sample (well) were

tored as text and carried to Weka to train the classifier model of-

ine. The offline training was conducted on a 64 bit Windows sys-

em with Intel ® Core TM i7-4770 CPU at 3.40 GHz processor and

6 GB RAM. 

Once the model is trained, it was loaded on the Android plat-

orm using Weka library (weka.jar file). At the testing level in

ig. 3 , the user can use any new image of the plasmonic ELISA test
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Table 2 

Major steps of the algorithm. 

Input: Images of plasmonic ELISA plates 

Output: Result 

Steps: 

1) Read the images in Red-Green-Blue (RGB) colour space 

2) Dynamically scale the image based on the initial size 

3) Smooth the image using Gaussian Blur filtering. 

4) Convert the image into the CIELAB colour space 

5) Use colours in the ab space to measure the Euclidean distance for clustering 

6) Select k = 4 

7) Dynamically repeat step to avoid local minima 

8) For clusters 1 to k, separate the objects using the index clustering. This will produce k images. 

9) Convert k images to binary images 

10) Use morphological transformation includes Dilation and Erosion 

11) Identify the optimum cluster(s) by calculating the difference between the produced images and the white colour (the image with the lowest distance is the 

optimum cluster) 

12) Use Canny edge detector to sharp edges 

13) Apply the Find Contours to the optimum cluster. This step will produce images equal to the sample wells in the segmented image 

11) Read through the well images and apply size and position noise filtering 

12) Extract the histogram features from the image 

13) Save the values in the .csv file 

14) Repeat steps 11–13 if more wells left, If not go to 15 

15) Pass the .csv file to the classifier 

16) Draw the result of positive or negative 

17) Show the result to the user 

Fig. 2. Feature analysis framework. 

Fig. 3. System framework: implementation of the algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 4. Samples in a plasmonic ELISA plate. (a) Samples are hard to visually distin- 

guish, (b) Samples are visually distinguishable. 
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on an Android device to produce the correct prediction of TB dis-

ease in real time. 

4. Results 

4.1. Image acquisition of plasmonic ELISA 

Plasmonic ELISA links the colour of plasmonic nanoparticles to

the presence or absence of the analyte (target protein). Mycobac-

terium tuberculosis ESAT-6-like protein esxB (CFP-10) was used as a

target protein biomarker for the TB detection Plasmonic is accom-

plished by linking the growth of gold nanoparticles with the bio-

catalytic cycle of the enzyme label. The protocol adapts a conven-

tional ELISA procedure with catalase-labelled antibodies. The en-

zyme consumes hydrogen peroxide (H 2 O 2 ), and then gold (III) ions

are added to generate gold nanoparticles. The concentration of hy-

drogen peroxide dictates the state of aggregation of gold nanopar-

ticles. This allows for the naked-eye detection of analytes by ob-

serving the generation of blue- or red-coloured gold nanoparticle

solution. 

In this work, the presence of TB-specific antibodies can be con-

firmed if the sample turns blue in the ELISA plate. In Fig. 4 (a)

gold ions are reduced when H 2 O 2 is present. The top 3 samples

are free from TB-specific antibodies. In the presence of H 2 O 2 non-

aggregated nanoparticles are formed turning the solution pink. In

the bottom 3 samples, the concentration of H 2 O 2 is decreased,

turning the samples blue, confirming the presence of TB-specific

antibodies. 

The key observations from the detailed inspection of the dataset

are listed below. 

Obs. 1: In the presented dataset, the sample-to-sample distance

was not constant ( Fig. 1 ). If the wells are filled within a

close neighbourhood, there is an unavoidable smearing ef-

fect. Thus, the background cluster holds many pixels which

are close to the foreground pixels. With varying position( x,

y ), depending on the class of s X,Y , the background cluster is

difficult to separate from the foreground clusters. 

Obs. 2: In some cases, the positive and negative samples are

hardly visually distinguishable. For image e.g. Fig. 4 (b), the

samples are adequate for naked eye measurement. For sam-

ple image e.g. Fig. 4 (a), the indicated sample pair are hard to

differentiate. This issue can worsen if the plate contains only

one sample and the colour is as ambiguous as in Fig. 4 (a),

which can lead to subjective interpretation. Moreover, there

is a conscious variation in the sample colour, s c ( r,g, b ) on in-

dependent A. 

Obs. 3: In the dataset, the value of Z (the volume of sample in

a well) had an impact on the size of the sample ( s x,y ). It im-

plies that the 1st colour moment can vary based on how the

wells are filled. s cn ( r,g, b ) = f (Z). A well filled up to the sur-

face would have a better exposure when they are positioned

at the far edge of the plate. 

Obs. 4: This work is comprised of wet sample, which is not im-

mune to light reflection from its surroundings ( Fig. 5 ). Ini-
tially, this ceiling light was not taken into account. Our hy-

pothesis was: the w X,Y with median ( x, y ) would be the ideal

position for the samples. Even a well filled up to the surface

(Obs. 3) in the median position can suffer from the ceiling

light reflection. 

Obs. 5: The impact of ‘camera to well position’ ( Fig. 1 ) is aligned

with our prediction in Section 3.1 . Such influence can be

analysed by the SKEW ( Fig. 2 ). 

The observations Obs. 1, Obs. 3 and Obs. 4 have a clear impact

n the image processing measures. The Obs. 2 works in our favour.

he qualitative colourimetric tests are usually suitable for naked-

ye detection, which necessitates (i) adequate biosensors to pro-

uce visually distinguishable colours and (ii) a user who has ap-

ropriate colour vision. Firstly, the use of intelligent systems can

educe the biochemical complexity without compromising the ac-

uracy, specificity, sensitivity and reliability. Therefore, the positive

nd negative samples do not require to be visually distinguishable.

econdly, an intelligent system such as the system we presented in

his paper can eliminate the subjectivity of interpretation. A robust

ystem should be able to handle the variation of sample colour

entioned in Obs. 2. 

.2. Image analysis 

.2.1. Image pre-processing 

At first, the acquired images were scaled and quantised to re-

uce the size of the image. For a simple method such as Otsu, the

mpact of scaling on processing time is negligible. On the other

and, to perform numerous iterations, the aid of scaling is oblig-

tory for a heavy segmentation technique such as clustering. In

ur earlier study ( Abuhassan et al., 2017 ) utilising desktop applica-

ion, typical images ranging ∼30 0 0–40 0 0 pixels were scaled 50%,

hich requires more reduction to be implemented on mobile plat-

orm. Bourouis et al. (2014) utilised 32 × 32 pixels retinal images,

hich is not substantial to analyse the colour features of the pre-

ented dataset. Moreover, the resizing in Bourouis et al. (2014) was

ot dynamic. For a known condition, the height and the width of

he image will not vary to a great extent. However, it may vary

ue to factors such as position of the camera, size of the plate,

nd camera configuration. Thus, the size reduction in this work

as performed dynamically ( Android Developers, 2018 ) and pro-

ortionally so that the geometry of the ROI was not deformed. The

uantisation techniques were carried out to reduce the size of the

mage by reducing the number of colours in the image ( Fig. 6 ).

t was observed that quantisation has insignificant impact on the

verall segmentation process. As a result, it was discarded. For a

ood quality image, such as Fig. 6 (a), the requirement of image

nhancement is not high. However, to develop a robust technique

pplicable to poor quality images, image enhancement is essential.

ence, the images were sharpened, which is a function of resolu-

ion and acutance. The radius value of standard deviation of the

aussian LPF controls the size of the region around the edge pix-

ls that is affected by sharpening. A large value sharpens wider

egions around the edges, whereas a small value sharpens nar-

ower regions around edges. The higher value of sharpening will

ead toward larger increase in the contrast of the sharpened pix-

ls. A very large value for this parameter may create undesirable

ffects in the output image, as it may appear as noise. Thus, an

dge-aware local contrast alteration was deployed to create more

ontrast. In the next step, the sharpened image was selectively

moothened to blur the empty wells. The objective of such ex-

ensive pre-processing was to ease the segmentation process and

inimise the number of iterations. However, these excessively pro-

essed images caused separation of cluster 1 and 2 in two differ-

nt clusters at the segmentation stage, as predicted. This led to an



A.M. Shabut et al. / Expert Systems With Applications 114 (2018) 65–77 71 

Fig. 5. Observation of the associated colours and key variables in the image. 

Fig. 6. (a) Samples in a plasmonic ELISA plate. Gradual enhancement of the image: 

(b) sharpened, (c) smoothened, (d) final enhancement before colour space trans- 

formation. Quantisation input: (e) full size quantisation, (f) plane-by-plane quanti- 

sation, (g) Superpixel, (h) JSEG in MATLAB and (i) Gabor filtering, (j) k -means, (k) 

Superpixel, (l) Gaussian filtering in OpenCV. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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longated object detection step. Hence, the Gaussian Blur filtering

 Fig. 6 (l)) was utilised as the only image enhancement (negative)

echnique prior to image segmentation. It assisted to address Obs.

. 

.2.2. Image segmentation 

The qualitative performance of different image segmentation

echniques can be seen from two different input images as shown

n Fig. 7 (OpenCV). The Otsu and watershed transformation were
nsuccessful in segmenting adequately. The multi-level Otsu per-

ormed well for a good quality image with low smearing effect,

here the samples are evenly spaced e.g. Fig. 6 (a). However, it

ailed for many images e.g. second input of Fig. 7 . The JSEG was

ime consuming, not suitable for implementation in real-time. The

-means showed good segmentation performance resembling our

arly study ( Abuhassan et al., 2017 ). 

As mentioned earlier, we require the positive and the negative

amples to belong in the same cluster. The use of Gaussian LPF

orced the segmentation process to hold the samples in the same

luster as illustrated in Fig. 8 . Such pre-processing and segmenta-

ion techniques precisely addressed Obs. 1 and Obs. 4. 

In our preliminary study, we performed the k-means with

 = 6 without any pre-processing and with minimum resizing

 Abuhassan et al., 2017 ). As it is mentioned earlier, theoretically

he input image should be segmented into three different clusters,

hich was later found to be imprecise in this work ( Fig. 9 ). Ini-

ially, utilising the desktop application (MATLAB), we analysed the

mpact of varying k without using Eq. (1) . Without forcing the al-

orithm to keep both positive and negative samples in the same

luster, higher k exhibited better segmentation, which is compu-

ationally expensive and less suitable to be performed in the mo-

ile environment. Without utilising Eq. (1) , the maximum accuracy

chieved was 88.81% with k = 6 ( Fig. 9 ). 

It was also observed that the required number of k may vary

or image to image due to the image quality, filled well-to-well

istance, camera position and positive-negative sample position

nd ratio per image. A range in the required number of clusters

as also observed from the silhouette method ( Rousseeuw, 1987 ),

hich supports the observation. However, it is not feasible to use

ultiple iterations to choose a different k each time for each im-

ge as it would become computationally expensive. If the ELISA

late contains more filled wells, the execution time is likely to be

igher, which makes it unsuitable for mobile applications. In fu-

ure, we will utilise the image histogram to predict the required

umber of k before starting the iteration. In contrast, many appli-

ations in the commercial app stores simplify the image processing

ortion by utilising a gridline approach, resulting in compromising

he freedom of diverse plate size and in some cases the ease of

se. 
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Fig. 7. Image Segmentation using different techniques. 

Fig. 8. (a) Input image, (b) Gaussian 2D filtering in MATLAB, (c) first cluster, (d) 

2nd cluster with positive and negative samples, (e) 3rd cluster, (f) fourth cluster. 

Fig. 9. Performance of the image processing algorithm for different k . 
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In this paper, we have used k-means with an optimum num-

ber of k = 4 (as mentioned in Table 2 ), with complimentary rigor-

ous pre and post processing techniques. With varying k, the overall

performance ( Fig. 9 ) of the image processing algorithm ( Table 2 )

varied as well. When k = 3, the unsupervised machine learning

showed under-segmentation, leading the segmented region to hold

image area outside of ROI. When k > 4, the algorithm showed over-

segmentation, which resulted in more poor performance due to ex-

tensive post-processing of the segmented image. 

For post-processing, subsequent to clustering, the images were

converted into binary images, followed by morphological opera-

tion. Without morphological processing, many images would suffer

from incorrect object reckoning. After segmentation, in a few cases

the samples joined together in association with the noise. If this

phenomenon occurs in the right cluster, then the ROI separation

process will fail. This problem can be better visualised with Fig. 10 ,

where the samples could not be adequately separated. Due to Obs.

1, few samples are attached together as illustrated in the high-

lighted image (marked with a red box). All these samples were cat-

egorised as a single sample, whereas they are 8 adhered samples.

Therefore, the binary dilation and erosion was used to ease the ob-

ject detection. Erosion operation was iterated four times more than

the dilation in order to isolate individual wells and overcome Obs.
. The size of each (processed) sample in Fig. 11 is much smaller

han Fig. 10 , which helped to reduce noise, and the samples were

o longer adhered ( Fig. 11 ). However, it presented a small possibil-

ty of over segmentation due to camera–to-plate position and the

ype of the plate. To achieve a higher degree of freedom regard-

ng the plate size, a conversation table is required to transform the

hysical dimension of the assay plate into image pixels. 

The next challenge was to automatically recognise the best

luster among the four clusters, which was accomplished by ex-

loring the well-to-well background. According to our research,

he best cluster is the one that has less white background. As ex-

lained earlier, the adversity of Obs. 1 is worsened if this phe-

omenon happens after the segmentation in the chosen best clus-

er ( Fig. 10 ). This background acting as noise needed to be filtered

rom the best cluster ( Fig. 11 ). Finally, the ROIs i.e. samples are sep-

rated using contour detection technique. 

To address all the challenges listed as the observations in

ection 4.1 , selection of a precise post-processing technique was

rucial. The s X,Y was diverse for the entire dataset, which is ex-

ected for a robust use of the application. We demonstrated an

ntelligent inspection after segmentation to correctly extract the

ample from the noise ( Fig. 12 ). The object detection technique

unctioned accurately even in the case of blurry images in which a

arger number of wells were detected and used. 

.3. Feature analysis and classification result 

The colour moments of the extracted ROI were analysed to train

he system offline. The reported articles ( Mutlu et al., 2017; Solmaz

t al., 2018 ) mostly feed the mean colour values to the classifiers.

e have considered 18 histogram features listed in Table 2 to en-

ure all the variables are being considered for a robust operation. 

The non-parametric classifiers such as random forest (RF), de-

ision tree, k-nearest neighbours algorithm (kNN), and cubic sup-

ort vector machine (CSVM) performed better than the parametric

lassification method e.g. linear discriminant and logistic discrimi-

ation. Without cross-validation, all these non-parametric methods

roduced 100% accuracy. 

The Multilayer Perceptron (MLP) with backpropagation was

omparatively slow and the classification performance was poor as

ell. It provided 95.2% accuracy. The learning rate was 0.3. In or-

er to circumvent the backpropagation algorithm to be trapped in

he local minima, the momentum rate was chosen to be 0.2. There

ere 500 epochs to train through without decaying the learning

ate. The network was allowed to be reset. Both attributes and

lasses were normalised before training the model. The required

umber of hidden layers were calculated from the number of at-

ributes and classes ( at t ributes + classes 
2 ) . The nodes of these 10 hidden

ayers were sigmoid. No validation set was used to terminate the

raining. The model was built in 0.35 s. 

With 30 weak learners, the RF provided a high accuracy (97.2%)

n our preliminary study ( Abuhassan et al., 2017 ). The RF showed
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Fig. 10. Constraint in segmentation without post-processing: adhered samples after clustering. 

Fig. 11. Image processing utilising morphological processing. 

Fig. 12. (a) Segmented image using Fig. 4 (a) as the input. (b) Post-processing after 

segmentation. (c) Final output after contour detection. (d) Segmented image using 

Fig. 5 (a) as the input. (e) Post-processing after segmentation. (f) Final output after 

contour detection. 
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onsistent performance in this study as well. In this work, the bag

ize in RF was chosen to be 100 without storing out-of-bag pre-

ictions in internal evaluation object. The bagging was conducted

ith 100 iterations and base learner. Only one seed was taken for

andom number generator. The maximum depth of the trees were

ept unlimited and minimum one instances per leaf was allowed

o occur. The desired batch size for prediction was chosen to 100.

t took 0.09 s to build the model in Weka. 

In this paper, the RF and Random Committee (RC) both showed

8.9% accuracy with stratified cross validation (10-fold) in the

eka platform. Keeping the batch size, number of seeds, mini-

um number of instances per leaf as same as RF, the RC was built

n 0.01 s using default number of iterations (10). The size of the

ree varied in each iteration. The Random Tree (RT), a decision

ree built on a random subset of columns achieved 98.4% accuracy.

eeping the parameters as same as RC, the Bagged Trees consisting

npruned binary trees provided 95.7% accuracy. 

The Cohen’s kappa coefficient ( Cohen, 1960 ) ( κ) is a statistic

hich compares an observed accuracy with an expected accuracy

hat can be seen as a random chance. It can be calculated as,

= 

p o −p c 
1 −p c 

, where p o is the prequential accuracy of the classifier and

 c is the probability that a chance-classifier makes a correct pre-

iction. The result of κ being 1 would signify that the classifier

s always correct and 0 would mean that the predictions coincide

ith the correct ones as often as those of the chance classifier. The

can provide more precise evaluation than the traditional accu-

acy metric. Moreover, it can aid in evaluating the classifiers among

hemselves. From the κ measurement ( Table 3 ), the RF is the best

lassifier. The κ of RF is in agreement with the accuracy of our

revious study as well ( Abuhassan et al., 2017 ). 

The true positive (TP) rate provides the instances where the

amples are correctly classified as the given class. TP rate =
TP 

TP + False negative ( FN ) 
. It can also be expressed as the sensitivity or

ecall. The highest TP rate was attained by the RF. The false posi-

ive (FP) rate or Fall-out provides the instances when the samples

re falsely classified as the given class. The precision is the fraction

f relevant instances among the retrieved instances i.e. Precision =
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Table 3 

Result of different classifiers in Weka platform. 

Classifier κ TP rate FP Rate Precision F-Measure ROC Area Class 

Random forest 0.9775 0.982 0.00 1.00 0.991 1.00 Negative 

1.00 0.018 0.973 0.986 1.00 Positive 

Random tree 0.9661 0.982 0.014 0.991 0.987 0.984 Negative 

0.986 0.018 0.973 0.979 0.984 Positive 

Random committee 0.9773 0.991 0.014 0.991 0.991 0.999 Negative 

0.986 0.009 0.986 0.986 1.00 Positive 

Bagged tree 0.9098 0.956 0.042 0.973 0.965 0.996 Negative 

0.958 0.044 0.932 0.945 0.997 Positive 

Multilayer perceptron 0.8988 0.947 0.042 0.973 0.960 0.977 Negative 

0.958 0.053 0.920 0.939 0.981 Positive 

Fig. 13. Confusion matrix of (a) random forest, (b) random tree, (c) random committee. 

Fig. 14. Accuracy at different stage of the system. 

 

 

 

 

 

 

 

 

Fig. 15. Confusion matrix of testing performance at mobile platform. 
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TP 
TP + FP . The F-Measure provides a combined measure for precision

and recall. It can be expressed as, F − measure = 

2 × Precision × Recall 
Precision + Recall 

. The detection ability of the classifier can be better perceived by

the receiver operating characteristic (ROC) area ( Table 3 ). Consider-

ing the ROC area, the RF is the best classifier for our dataset. The

accuracy, specificity and sensitivity can be better visualised from

the confusion matrix. The confusion matrix of the top three classi-

fiers are illustrated in Fig. 13 . 

The random feature selection in RF, makes the trees more inde-

pendent from one another than Bagging, which led to higher ac-
uracy and better bias-variance trade-off. Each tree is able to learn

nly from a certain subset of features, making it a faster ensem-

le method as well. Moreover, the RF showed a consistent better

erformance in various metrics. Similar performance to RF was at-

ained in the MATLAB platform as well. Therefore, we trained our

odel with RF on the mobile platform. 

.4. Testing and validation on the mobile platform 

In this work, we demonstrated automatic, real-time TB disease

ecision making on a mobile platform. 

The trained model was deployed on the Android platform as

llustrated in Fig. 3 . To test the efficiency of this mobile-based in-

elligent algorithm for detecting TB, a separate dataset was used

han Section 3.1 . This new dataset is unknown to the system and

ontained 61 samples. Among these samples, 20 were positive, 41

ere negative and one failed to produce a colour. This held-out
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Fig. 16. TB disease detection application. 
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alidation on the mobile platform ensures the reliability of the sys-

em. 

On the mobile platform, for this unseen data, the system pro-

ided correct prediction for 60 samples. Thus, a final accuracy i.e.

rom image processing up to TB detection on the mobile platform,

f 98.4% was achieved ( Fig. 14 ). The necessity of balanced data can

e perceived from the confusion matrix ( Fig. 15 ). The performance

f the classifier on a balanced dataset in Weka platform is shown

n the Supplementary document. In the absence of a larger dataset,

ver-sampling or multiple resampling ( Estabrooks, Jo, & Japkow-

cz, 2004 ) can shed some more light on the performance of the

obile platform. 

One of the biggest challenges of this work was to provide this

iagnostic decision on the mobile platform in real-time. The pre-

iction on the mobile platform requires the performing of image

rocessing of the incoming image on the mobile device itself. The

rocessing time is a subject to the number of iterations during im-

ge segmentation and object detection and is heavily influenced

y Obs. 1, Obs. 2 and Obs. 4. We embraced careful pre-processing

echniques to minimise the number of iterations. The k-means uses

 random initial value and it is sensitive to the size of the image,

hus scaling has a direct impact on this clustering technique re-

arding the number of k and how the image is being segmented,

hich justifies the pre-processing used in here. Moreover, we man-

ged to confine the best cluster containing multi-sample of differ-

nt classes within the same cluster with aid from the Gaussian fil-

ering. This algorithm ( Table 2 ) possess the robustness to deploy

he image processing scheme on the mobile platform for other as-

ay plates, which can be further authenticated for the quantitative

olourimetric tests. 

The execution time was recorded for all the images in the

ataset. Due to fewer iterations, the image processing occurs in

eal time liberating the implementation on the mobile platform

 Fig. 16 ). The input image of Fig. 10 , containing 20 samples, took

3 s to produce the result. The image with only 6 samples e.g.

ig. 6 (a) provided the result within 9 s. Therefore, it can be con-

luded that our system is capable of delivering TB disease decision

rom the plasmonic ELISA image on the mobile platform within

1–2 s/sample ( Fig. 16 ). 

An image annotation technique was used in the embedded sys-

em to identify each sample individually. The Android memory

anagement was utilised to enhance the heap performance by fol-

owing the correct life cycle of activities in the Android platform.

he memory management includes actions with garbage collector

GC), memory optimisation, and tree dominator ( Android Develop-

rs, 2018 ). In order to reduce memory leak, the elements used by

he system were scaled. The application persistently searched for

a

he objects that were no longer required (garbage) after the life

ycle, or reachable which were needed for references. The heap

umps were accumulated over the period of time to determine if

here was any growing memory leak. The allocation tracker facili-

ated a better understanding of the memory usage. 

In this work, we utilised 8-bit channel ARGB_8888 configura-

ion for the bitmap of image. Although it occupies considerable

mount of memory and immediately allocated in the heap, quickly

xhausting the memory, this is an optimised choice to maintain

he quality of the scaled images. Moreover, this work involves se-

ies of image conversations. Therefore, redundant images had to

e simultaneously deleted. For garbage collection, a mechanism to

emove unnecessary objects to the java application using a vir-

ual machine, Dalvik GC was utilised ( Ehringer, 2010 ). The type of

arbage collectors were also examined closely. 

The application was tested on Samsung Galaxy S6, Samsung

alaxy Note 3 and Samsung Galaxy J3 Prime. On most of these

evices, the application performs similarly in terms of the classifi-

ation accuracy and processing time. 

. Limitations and scope of improvement 

For any diagnostic system, it is important to note its limita-

ions as well as its capabilities. In the image processing section,

n spite of multi-step filtering, the noise due to Obs. 1 needs to

e further adjusted. In future, to train the model we will conduct

eature optimisation and bias-variance trade-off. The future work

hould also focus on rectifying the variation between κ and accu-

acy ( Section 4.3 ). We will also explore non-parametric NN with

ackpropagation, deep NN, hybrid decision tree and naïve Bayes

lassifiers ( Farid, Zhang, Rahman, Hossain, & Strachan, 2014 ) to in-

estigate a potential enhancement of the accuracy. 

. Conclusion 

This paper has presented a mobile enabled plasmonic ELISA

ased TB antigen-specific antibodies detection scheme using

martphones with the integration of machine learning techniques.

sing a robust image processing technique comprised of clustering

nd object detection, our system can detect samples (wells) with-

ut any guide or virtual plate. The decision components facilitated

election of the right cluster among the multiple number of clus-

ers, detection of wells and transcending the samples from noise.

herefore, unlike the reported articles, the system does not require

he user to provide seed points or perform cropping. Moreover, the

ystem is capable of reading multiple samples and classifying them

s positive or negative in real time. 
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The plasmonic ELISA based technique produce colours for pos-

itive and negative samples. However, making of a final decision

based on the colour appearance is not accurate in all the cases.

Therefore, in this work, we demonstrated a smartphone-based POC

platform that takes the final decision based on colour analysis. This

work incorporated supervised machine learning to free the TB test

result from the colour perception of individuals and its subjectiv-

ity of interpretation. Utilising 18 histogram features, we achieved

98.9% accuracy with the Random Forest classifier. This fully auto-

mated and self-contained system with image capturing, analysing

and classification service is then embedded into the Android sys-

tem. Using a completely new dataset, we demonstrated 98.4% ac-

curacy to diagnose TB-positive samples on the mobile platform. In

the absence of any existing automatic platform without an opto-

mechanical attachment, to the best of our knowledge, it is the best

performance for TB diagnosis on the mobile platform. 

The portability, technical and financial feasibility in automatic

TB diagnosis in the presented system can benefit millions of peo-

ple, especially in remote locations where few experts are available.

This technique can be applied to other colourimetric qualitative

tests, especially for ELISA and paper-based assays. Moreover, this

system can be a guide in providing properly distinguishable colour

by minimising the complexity of a chemical method utilising a

powerful algorithm, which will reduce the dependency on perfect

colour vision for naked-eye evaluation. The scheme shows great

potential in evolving healthcare applications to benefit wider com-

munities. A polythetic approach and subsequently a clinical trial

will be executed in future to enhance the expert system with bet-

ter precision and reliability. 
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