Francis, Andrew and Moulton, Vincent ORCID: https://orcid.org/0000-0001-9371-6435 (2018) Identifiability of tree-child phylogenetic networks under a probabilistic recombination-mutation model of evolution. Journal of Theoretical Biology, 446. pp. 160-167. ISSN 0022-5193
Preview |
PDF (Accepted manuscript)
- Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (859kB) | Preview |
Abstract
Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Computing Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Computational Biology > Computational biology of RNA (former - to 2018) Faculty of Science > Research Groups > Computational Biology > Phylogenetics (former - to 2018) Faculty of Science > Research Groups > Computational Biology Faculty of Science > Research Groups > Norwich Epidemiology Centre Faculty of Medicine and Health Sciences > Research Groups > Norwich Epidemiology Centre |
Depositing User: | Pure Connector |
Date Deposited: | 13 Mar 2018 11:30 |
Last Modified: | 14 Jun 2023 13:19 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/66480 |
DOI: | 10.1016/j.jtbi.2018.03.011 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |