Dong, Xingping, Shen, Jianbing, Shao, Ling and Yang, Ming-Hsuan (2015) Interactive cosegmentation using global and local energy optimization. IEEE Transactions on Image Processing, 24 (11). pp. 3966-3977. ISSN 1057-7149
Preview |
PDF (Accepted manuscript)
- Accepted Version
Download (1MB) | Preview |
Abstract
We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothness in a local neighborhood. This energy optimization can be converted into a constrained quadratic programming problem. To reduce the computational complexity, we propose an iterative optimization algorithm to decompose this optimization problem into several subproblems. The experimental results show that our method outperforms the state-of-the-art unsupervised cosegmentation and interactive cosegmentation methods on the iCoseg and MSRC benchmark data sets.
Item Type: | Article |
---|---|
Additional Information: | (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. |
Faculty \ School: | Faculty of Science > School of Computing Sciences |
Related URLs: | |
Depositing User: | Pure Connector |
Date Deposited: | 16 Feb 2017 02:21 |
Last Modified: | 03 Jul 2023 10:30 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/62620 |
DOI: | 10.1109/TIP.2015.2456636 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |