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Abstract— We propose a novel interactive cosegmentation 

method using global and local energy optimization. The global 
energy  includes two terms:  1)  the global  scribbled energy   and 
2) the interimage energy. The first one utilizes the user scribbles 
to build the Gaussian mixture model and improve the coseg- 
mentation performance. The second one is a global constraint, 
which attempts to match  the  histograms  of  common  objects.  
To minimize the  local  energy,  we  apply  the  spline  regression 
to learn the smoothness in a local neighborhood. This energy 
optimization can be converted into a constrained quadratic 
programming problem. To reduce the computational complexity, 
we propose an iterative optimization algorithm  to  decompose 
this optimization problem into several subproblems. The 
experimental results show that our method outperforms the 
state-of-the-art unsupervised cosegmentation and interactive 
cosegmentation methods on the iCoseg and MSRC benchmark 
data sets. 

Index Terms— Co-segmentation, Gaussian mixture model, 
optimization, local spline regression, histogram  matching. 

 

I. INTRODUCTION 

ITH the development of mobile cameras, users can 

easily capture more and more images and share   them 

on the Internet. Among a group of images, the same or similar 

foreground objects are likely to occur. The goal of image co-

segmentation is to exploit information from multiple images 

to identify the foreground objects with pixel-wise accuracy.

 Rother et al. [12] proposed an image 
 

Manuscript received May 6, 2015; accepted July 5, 2015. Date of pub- 
lication July 14, 2015; date  of current  version  July 31,  2015.  This work  
was supported in part by the National Basic Research  Program  of China  
(973 Program) under Grant 2013CB328805, in part by the National Natural 
Science Foundation of China under Grant 61272359, in part by the Program 
for New Century Excellent Talents in University under Grant NCET-11-0789, 
and in part by the Fok Ying-Tong Education Foundation for Young Teachers. 
The work of M.-H. Yang was supported in part by the National Science 
Foundation CAREER under Grant 1149783, in part by NSF through the 
Division of Information  and Intelligent  Systems under Grant 1152576, and  
in part by Specialized Fund for Joint Building Program of Beijing Municipal 
Education Commission. The associate editor coordinating the review of this 
manuscript and approving it for publication was Prof. Kiyoharu Aizawa. 
(Corresponding author: Jianbing Shen.) 

X. Dong and J. Shen are with the Beijing Laboratory of Intelligent 
Information  Technology,  School  of  Computer  Science,  Beijing  Institute   
of Technology, Beijing 100081, China (e-mail: dongxingping@bit.edu.cn; 
shenjianbing@bit.edu.cn). 

L. Shao is with the Department of Computer Science and Digital 
Technologies, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K. 
(e-mail: ling.shao@ieee.org). 

M.-H. Yang is with the School of Engineering, University of California, 
Merced, CA 95344 USA (e-mail: mhyang@ucmerced.edu). 

 

co-segmentation  method  using   the   histogram   matching   

of the foreground within the Markov Random Field (MRF) 

framework for segmentation. Early co-segmentation 

approaches [12],  [17],  [18],  [20]  only  used  a  pair  of 

images as input under the assumption of sharing a common 

foreground object. Numerous approaches [19], [25], [26], [28], 

[30], [31], [35] have recently been developed to co-segment 

multiple images. All these unsupervised co-segmentation 

approaches have achieved more accurate results than the 

classic single-image segmentation methods. However, these 

unsupervised co-segmentation methods do not perform well 

when the foreground and background are similar in  one  

image, or when the  backgrounds among images are  similar  

as it is difficult to find the common object   automatically. 

Scribbles for foreground and background pixels have been 

used to improve the image co-segmentation performance. 

Batra et al. [21] added user scribbles in some of input images 

to build two global Gaussian Mixture Models (GMM) for both 

foreground and background classes. A graph cut algorithm is 

then used to co-segment these  images.  However,  these 

GMMS models are less effective where the foreground and 

background are similar. For these images, it is necessary to add 

more scribbles that provide supervised information to indicate 

the foreground objects in these similar regions. In contrast to 

the co-segmentation approaches within the MRF framework, 

Collins et al. [29] proposed an image co-segmentation method 

using the random walker algorithm where the smooth term     

is based on normalized Euclidean distance of pixel intensity. 

However, this method is sensitive to parameter settings and 

likely to generate different segmentation results  [22]. 

To address the above-mentioned issues, we propose a novel 

interactive co-segmentation algorithm using the global and 

local energy optimization. Our energy function includes three 

terms including global scribbled energy, inter-image energy, 

and local smooth energy. The first two global energy terms  

are used to reduce the user scribbles including those newly 

added scribbles by GMM,  and the  last  local  smooth  energy 

is used to solve the problem that the parameters are sensitive 

in the smooth term. Both foreground GMM and background 

GMM are first built by the user scribbles in all images, which 

can be viewed as the global guide information from users. Our 

global scribbled energy is constructed based on the superpixels 

with highest foreground/background posterior probability from 

each image. Assuming each image has a common foreground 

histogram in a group, we use an inter-image energy to compare 

them to an average histogram. By considering the  consistence
 



 

 
 

 

Fig.  1.  Co-segmentation  results.  Top:  input  skate   group   images.  
Middle: results by the random walker co-segmentation [29]. Bottom: results 
by our approach. Note that all the co-segmentation results are produced  by 
the same scribbles (red for foreground and green  for background),  where  
four representative  images  are  shown  from  the  total  thirteen  input  
images. 

 
and the smoothness of superpixels in a neighborhood, the 

local energy is then designed as the local smooth term. The 

spline regression is further employed to automatically learn 

this local smooth term, which avoids tuning  the parameters 

of the general Gaussian smooth function. The minimization 

problem of our energy function can be converted into the 

constrained quadratic programming (QP) problem, where an 

iterative optimization strategy is designed for the computa- 

tional efficiency. As shown in Fig. 1, parts of the background 

and foreground objects are similar in color. Since there are 

many strong edges in the common object, the random walker 

cannot reach the right segmentation edges without enough user 

scribbles. In contrast, our approach performs well in these 

images as shown in the last row of Fig. 1, where our energy 

captures the local and global characteristics of the foreground 

objects after optimization. The source code of this work will 

be available at http://github.com/shenjianbing/interactivecoseg. 

The contributions of this work to co-segmentation are 

summarized as follows: 

1) We  propose  a  novel   energy   optimization   method 

for interactive co-segmentation including global scrib- 

bled energy, local smooth energy, and inter-image 

energy. 

2) The spline regression is introduced to design the smooth 

term, which avoids tuning the parameters of the smooth 

term and has better self-adaptability to most complex 

natural images. 

3) An iterative optimization algorithm using a constrained 

QP solver is presented for the computational efficiency 

which scales up well for large  datasets. 

 

II. RELATED WORK 

Most image co-segmentation methods are derived from 

single-image segmentation methods by adding similar 

foreground constraints in the MRF based optimization 

framework. Similar to the single-image segmentation, the 

current image co-segmentation approaches can be classified 

into two groups: unsupervised and interactive co-segmentation. 

Unsupervised Co-Segmentation: Rother et al. [12] intro- duced  

an  image  co-segmentation method  by  combining the 

MRF framework and global constraints with foreground 

histogram matching. Based on a pair of images, the co-

segmentation problem is posed as an energy minimization 

problem, and a  graph cut method based on the trust region     

is proposed. Based on this work,  Mu  and  Zhou  [13]  used 

the L2 norm constraint  as  the  global  constraint  instead  of 

the  L1  norm  in  [12].  Hochbaum  and  Singh  [18]  proposed 

a max-flow algorithm by modifying the histogram matching. 

In addition to histogram-matching based algorithms, clustering 

has also been utilized for co-segmentation. Joulin et al. [19] 

combined normalized cuts and kernel methods to design a 

discriminative clustering co-segmentation framework, where 

they classified the pixels in all images into foreground and 

background classes. This co-segmentation method was solved 

by a continuous convex searching optimization. Recently, they 

extended their framework to multi-class co-segmentation [28]. 

The co-segmentation method for a large-scale image dataset 

was proposed in [24]. This method was modeled by 

temperature maximization with finite K heat sources on a 

linear anisotropic diffusion system. This can  be  formulated  

as a K-way segmentation that maximizes the segmentation 

confidence of every pixel in an image. In theory, this temper- 

ature function is a sub-modular function, and thus at least a 

constant approximation of the optimal solution is guaranteed 

by a greedy algorithm. These unsupervised co-segmentation 

methods do not perform well when the foreground objects and 

the background are similar. The interactive co-segmentation 

methods alleviate these problems by indicating the foreground 

objects with sparse scribbles. 

Interactive Co-Segmentation: We first review the related 

work on interactive segmentation methods for a single-image. 

Boykov and Jolly [7] converted interactive segmentation into a 

discrete optimization problem, which was solved by graph cut. 

Sinop and Grady [14] proposed a seeded image segmentation 

framework by unifying graph cut and random walker. Within 

this framework,  the  graph  cut  or  random  walker  [6],  [34] 

is viewed as a certain energy minimization with an  L1 norm  

or an L2 norm. Xiang et al. [22] proposed a semi-supervised 

classification algorithm via local spline  regression,  which  

can  be  used  for  the  interactive  image  segmentation.  

Zhang and Ji [4] presented an interactive segmentation using 

the Bayesian network model, where they performed the 

superpixel over-segmentation to construct a multilayer 

Bayesian network. The idea of interactive segmentation using 

scribbles for a single-image can be naturally extended to inter- 

active image co-segmentation. Batra et al. [21], [23] proposed 

an interactive co-segmentation technique, which enabled the 

user to correct the inconsistent segmentation by adding sparse 

scribbles. They proposed an recommendation method to help 

users choose the regions needing the scribbles. This algorithm 

assumes all images in a group share a common foreground 

GMM and a background  GMM,  which  are  represented  by 

all scribbles. With the common GMMs, they process each 

image as a single-image segmentation [7]. Collins et al. [29] 

proposed an interactive co-segmentation approach by adding 

the consistency constraint between the foreground objects 

using the random walks model. However, the random walks 

http://github.com/shenjianbing/interactivecoseg
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Fig. 2. Workflow of our algorithm. The left four images are user scribbled 
images where the red and green scribbles indicate the foreground and 
background respectively. There are no scribbles on the bottom two images 
since our algorithm can segment the objects of some images without any 
scribbles. The right six  images  are  the  results  of  co-segmenting  all  the  
30 images in the cow  class in the MSRC   dataset. 

 

 

optimization will make the co-segmentation results  sensitive 

to the quantities and positions of the user scribbles   [6]. 

 
III. PROPOSED ALGORITHM 

The workflow of our interactive co-segmentation  

framework  using   global   and   local   energy   minimization 

is shown in Fig. 2. The user is just required to indicate the 

sparse scribbles on a small number of images which    contain 

the common object. Then we denote this group of n images 

by {I1, I2, ... , Il, Il+1, ··· , In }. The first l images are the 
scribbled images and the others are the unscribbled images. 
We  pre-segment each image  Ii  into a group of small   regions 

 

  

 
Fig. 3. Illustration of processing the conflicting superpixel between 
foreground scribbles and background scribbles. (a) The image of superpixels; 
(b) the user scribbled  image. 

 

 

function consists of three components: the global scribbled 

energy, the local smooth energy,  and  the  inter-image  

energy. 

E = Esmooth + λ1 EGMM + λ2 Einter, (1) 

where λ1, λ2 are the trade-off parameters. 

 

A. Global Scribbled Energy 

How to effectively utilize the user scribbles is key for 

interactive co-segmentation. We build a Gaussian Mixture 

Model as a global guide, where the GMM is generated from 

Ri  = 
.
ri, j 

. 
j =1,...,mi 

(i.e. superpixels) by an over-segmentation the  scribbled  regions  of  all  images  and  then  it  is  used as 
global guidance for co-segmentation. The general GMMs with 

method  such  as  the  mean-shift  algorithm  [8],  where  mi is 
the number of superpixels in image Ii . Two kinds of features 
are extracted from these superpixels Ri . One is the average 

color intensities Xi = [xi,1, xi,2, . . .  , xi,mi ]  ∈ Rd ×mi , where 

each column xi, j of Xi is the mean color intensities of a 
superpixel ri, j . The other is the color histogram descriptors 

Hi  = [hi,1, hi,2, ... , hi,mi ] ∈  Rdh ×mi  by color intensities. 

A  vector  yi   ∈  {0, 1}mi  is  used  to  represent  the superpixel 
labels for image Ii , where 1 or 0 assigns the corresponding 
superpixel  to  the  foreground  or  the  background.  Then  the 

five components [9] are used in our approach, and these 

GMMs are isotropic without specific covariance forms. We can 

assume that all images in the group share a common model, 

i.e., only one model need to be learned. It can be represented 

by using the global GMM which consists of a foreground 

GMM (denoted as GMM f ) and a background GMM (denoted 

as GMMb). We  denote the color intensities of all scribbled 
foreground and background superpixels by X 

f  
and Xb. These 

two models are separately learned by X 
f 
and Xb. More details 

concerning the learning process can be seen in   [15]. 
foreground histogram of Ii is calculated as h 

f 
= 
.

 
i.e. h 

f 
= Hi · yi . 

hi, j yi( j ), Using the global GMM f  and GMMb, we can obtain the m 
i posterior  probability  of  foreground   P   

f
 ∈   [0, 1] i   and 

For  each  scribbled  image  Ii(i   ≤  l),  we  use  two  index background  Pb
 0, 1 m 

i i   in  each  image.  The   posterior 
vectors  y 

f
 ∈  {0, 1} and  yb

 ∈  {0, 1}mi to  indicate  the i    ∈  [ ] 
i i probability may  not  be  very accurate  for  the  foreground or 

scribbled foreground or background superpixels  respectively. 

There will be a conflict when two kinds of scribbles fall into 

the same superpixel. This conflicting superpixel may occur at a 

weak boundary, which may consist of most foreground  pixels 

the background, since some superpixels  in  the  foreground 

are similar to those  in  the  background.  Thus,  we  choose  

the  superpixels  with   K   highest  posterior  probabilities   as 
guidance  to  reduce  the  error.  We   use  two  index    vectors 

and a few background pixels such as the superpixel in the blue 
y

GMM f mi GMMb mi 

rectangle of Fig. 3. Our goal is to co-segment the foreground, 

and the segmentation results should contain the foreground 

information as much as possible. If we assign this surperpixel 

to the background, some foreground information will be lost. 

Thus, the conflicting superpixel is assigned to the foreground. 

Then, these vectors can be formulated as follows: if foreground 

i          ∈ {0, 1}    and  yi ∈   {0, 1}     to   indicate K 
highest   posterior   probabilities  of   the   foreground  and the 

background, which store the indexes of these  superpixels. 

We define the global scribbled energy, which measures the 

consistence between the superpixels with K highest posterior 

probabilities and their corresponding labels, as  follows: 

scribbles fall into superpixel ri, j , y 
f 
( j ) = 1, else y 

f 
( j ) = 0; 

⎛ ⎞
 

i i n 

if  background  scribbles  fall  into  superpixel  ri, j   and  fore- 
ground scribbles do not fall into superpixel ri, j , y

b( j ) = 1, EGMM =
. ⎜ .

 "yi( j ) − 1" + 
.
 2

 

i 

else yb( j ) = 0. The problem of interactive co-segmentation 
can   be   formulated   as   energy   minimization.   Our energy 

i   1 
⎝ 

GMM 

yi ( j )=1 y
GMMb ( j )=1 

⎠ 

(2) 
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spline regression in its spatial adjacent  neighborhood: 

ki 

J(gi) = 
. 

(zi j − gi(cij )) + λS(gi), (4) 
 

 

 
 

 

 
 

Fig. 4. Illustration of the labeled scribbles by GMM: (a) the user scribbled 
images. (b) The images without user scribbles. (c) and (d) The automatically 
labeled scribbles by GMM. In (c) and (d), the red and green regions indicate 
the foreground and background  respectively. 

 

This energy function is transformed  to 
n 

EGMM = 
. 

(yi − yGMM)T Di(yi − yGMM), (3) 
i i 

i=1 

j =1 

where S(gi) is a penalty function, λ is a trade-off parameter, 

and J(gi) denotes the loss energy of regularization. 

For a small λ, this objective function can be transformed to a 

simplified formulation. The details can be seen in Appendix A. 

Here, we directly give this  formulation: 

J(gi) ≈ λZ T Mi Zi, (5) 

where Mi is the upper left ki × ki submatrix of the inverse 
matrix of the coefficient matrix in (24), and λ is a small value, 

Zi is the label vector, i.e., Zi = [zi1 , zi2 , . . .  , ziki 
]T. 

After obtaining the loss  energy in each neighborhood    Ni , 
the loss energies can be added together as a  global energy.  

We   can  ignore  coefficient  λ  for  computational   simplicity 
in (5) as follows: 

where  yGMM
 

GMM 
= yi · 1 + y

GMMb · 0,  Di ∈ Rmi ×mi  is m 

a  diagonal matrix, and the  diagonal elements correspond    to E(y) ∝ 
. 

Z T Mi Zi = zT Mz, (6) 
vector y

GMM f  
+ y

GMMb , i.e.  Di  = diag(y
GMM f  

+ y
GMMb). i=1 

i i i i 
Note that yGMM is the label vector given by GMM. In other where z = [z , z , . . .  , z  ]T ∈ Rm , S ∈ Rki ×m is a row selec- 

i 1     2 m i 

words,  the  GMM  can  be  viewed  as  a  “user”  who   labels 

2K superpixels including  the  foreground  and  background 

in each image automatically, and the labels are stored in  

vector yGMM. Then Di indicates the superpixels that are  

labeled by GMM. Fig. 4 shows the labeled scribbles by  

GMM. These guiding scribbles may be added in foreground 

(background) regions according to the most different   appear- 

tion matrix subjecting to  Zi  = Siz, and  M = 
.m    

ST Mi Si . 
i=1   i 

For one scribbled image, we add the scribbled   information 

to (6) as a constraint and transform it to the following 

minimization: 

min zT Mz, 
z .

z( j ) = 1,   if c j  is scribbled as foreground 

ance of the background (foreground). With the help of these 

guiding  scribbles,  the  user  can  reduce  scribbles  in     these 

s.t. 
z( j ) = 0, if c j is scribbled as background. 

(7) 

regions. The user only needs to add scribbles in these regions 

for a few images. These regions of other images in the same 

group will be labeled automatically by  GMMs. 

 
B. Local Smooth Energy 

The local smooth energy considers the local smoothness  of 

Combining the  aforementioned notations and  (7), we  obtain 

the local smooth energy of all images as   follows: 
n 

min Esmooth = 
. 

yT Msmoothyi, 
yi 

i i 
i=1 .

yi( j ) = 1,   if  xi, j  ∈ X 
f 
,    i  = 1, 2, . . . , l 

labels, i.e., the labels will be the same in a local neighborhood, 

when their corresponding features are similar. Instead of    the commonly-used Gaussian function with affinity  measurement 

s.t. 

 
where  X 

f
 

yi( j ) = 0,   if x i, j ∈ s ,  i = 1, 2, . . .  , l 
(8) 

s   or  Xb  is  the  set  of  all  scribbled  foreground or 

for smoothness in previous work [14], [29], we use the spline 

regression to learn the local smoothness. The spline consists  

of polynomials and Green functions. It is smooth, nonlinear, 

and is able to interpolate the scattered data points with high 

accuracy [22]. This smooth energy can be viewed as the local 

energy inside each image. Thus, we only  need to  consider  

the smoothness in a single image. For the precise description 

of notation, we  redefine  some  notations.  We  denote  ci  as 

the feature, zi as the label of  superpixel  Ri  in  a  single  

image,  and  m   as  the  number  of  superpixels.  The   spatial 

adjacent neighborhood of each superpixel Ri  (including itself) ki 

background, and  Msmooth denotes  M  in (7). 

 

C. Inter-Image Energy 

The inter-image energy measures foreground similarity 

between   different   images   in   a   group.   In   previous  

work [12], [17], [18], [20], [26], [27], [32], the histogram 

matching descriptor has been used to build the foreground 

model. The foreground similarity between different  images 

can be measured by the distance of corresponding histograms. 

It is intuitive to compare the histograms between image 

regions, but the computation is expensive. We  compare  them 

is  denoted  as  Ni  = 
.
ci j 

. 

j
 an index, i.e., i j  ∈ 1, 2, =1

,  where  subscript  i j  stands for m. Then, in  each  neighborhood 
to  a  common  global  foreground  histogram  h  to  reduce the 
computational   complexity.   The   corresponding inter-image 

. . .  , 

we assume that there exists a spline function gi  : Rd → R 
which  can   directly  map   each  pixel  ci j   to  its   label   zi j , 

energy is formulated as follows: 

n n 

i.e  zi j    =  gi(cij ), j =  1, 2 , . . . ,  ki .  According  to  this 
assumption, we can build a general objective function for 

Einter = 
. 

"h 
f
 

i=1 

− h" 
 

 

= "Hi yi − h" , (9) 
i=1 

f 



 

i 

h 
f 

i 

i 

i 

i i 

i=1 

i 

 

where  "·"  is  the  Euclidean  distance,  Hi   ∈  Rdh ×mi ,   and 

i  ∈ Rdh  is the foreground histogram. 

Given the histogram h 
f  

of each foreground, we can achieve 

large-scale groups of images. Thus, we propose an iterative 

optimization algorithm for efficient computation in the next 

sub-section. 

the optimum of h, which is the center of h 
f  

by setting the 

derivative of (9) to be zero. The formulation is defined   as: E. Iterative Optimization Algorithm 

1 

h = 
n

 

n 
. 
 

i=1 

h 
f 
. (10) 

We  observe two properties of the proposed  algorithm. 

Property 1: Given histogram  h,  the  energy  minimiza-  

tion (13) can be decomposed as some   sub-problems: 
 D. Total Energy Minimization min Ei  = yT Li yi + yTVi + Ci, 

yi
 i i   

˜ ˜ 

Reformulating    the    above    scribbled    energy    and  the 

inter-image energy, the total energy minimization can be con- 

verted into a quadratic programming problem. The   scribbled 

s.t. li ≤ yi ≤ ui  i = 1, 2, . . .  , n, (16) 

where Ṽi  = −2λ2 H Th − 2λ1 Di yGMM and C̃ i  = λ2h
T

h + Ci . 
i i 

energy in (3) can be reformulated  as: 
n 

EGMM = 
. 

yT Di yi − 2yT Di y
GMM + yGMMT 

yGMM. (11) 

Each sub-problem is a constrained QP problem with a    small 

scale. Then it can be  solved  with  cheap  computation,  and 

we   choose   the   interior-point   algorithm   to   solve    these 
i 

i=1 

i i i i 
sub-problems. 

The inter-image energy in (9) can be reformulated   as: 

n 

Property 2: Given vector yi, i = 1, 2, . . .  , n, h can be easily 
calculated as follows: 

Einter = 
. 

yT
 

T   
i  i i i 

1   
n 

f 1   
n 

 
i=1 

i  Hi  H y − 2yT H h + h
T

h. (12) 
h = 

n
 
. 
 
i=1 

hi  = 
n

 
. 
 
i=1 

Hi yi. (17) 

Furthermore, we can  use  bounds to  limit  yi  to  the  unit box 
as well as  enforce the scribbles’ constraints. Then,   substitut- According to property 2, we only need to initialize  yi  as    y0, 

n
 i 

ing (8), (11), and (12) into (1), we   have: then we can get the initialization of h: h
0 
= 1 
. 

Hi y0. 
n i 

n i=1 

min E = 
. 

yT Li yi + λ2h
T

h + Ci According to  the  above two  properties and  the initialization, 
 

 

yi,h i=1 
− 2λ2 y

T Hih − 2λ1 y
T Di y

GMM, 

our iterative optimization algorithm is  designed as     follows. 
 

 

In  each  iteration,  we  first  fix  h   and  solve  the  i th     sub- 
i i i 

s.t. li ≤ yi ≤ ui,  i = 1, 2, . . .  , n, (13) 

where   Li   =   Msmooth  + λ1 Di  + λ2 H THi   and   Ci  = 

λ1 y
GMMT 

yGMM 
i i . The 2-tuple(li, ui) is (1, 1) for    foreground 

 
 

problem (16) to achieve yi , then update h using (17) and repeat 

this process until i = n. This iteration is repeated until the final 
convergence. 

The remainder problem is how to initialize  yi .  According 

to (13), if we set λ 0 (i.e., omit the inter-image energy), the 
scribbles, (0, 0) for background scribbles, and (0, 1) otherwise. 
I We can denote a long vector Ỹ  = [yT, yT , . . . ,  yT, h

T
]T ∈ 

2 = 
minimization problem is still feasible, since the local   smooth 

RN +dh , N  = 
.n

 mi . 
1 2 n energy keeps the local information and the     scribbled energy 

keeps  the  global  information.  This  solution  is  enough   for 
The energy function (13) can be formulated as the following 

bound-constrained QP problem (omitting the constant  Ci ): 
initialization. This minimization problem is formulated  as: 

n 
min E = Ỹ T M̃ Ỹ − 2Ỹ TṼ , min E = 

. 
yT(Msmooth

 λ1 Di)yi 2λ1 y
T Di y

GMM
 

Ỹ  yi 
i i + 

i=1 

− i i 

s.t. l̃  ≤ Ỹ  ≤ ũ   (14) 
s.t. li ≤ yi ≤ ui,  i = 1, 2, . . .  , n. (18) 

where V˜  = [vT,vT,..., vT, 0]T ∈ RN +dh , vi = λ1 Di yGMM, This problem can also be decomposed into some sub-problems 
1 2 n i 

i  = 1, 2, ... , n, l˜  = [lT, lT,..., lT, −∞]T ∈ RN +dh , 
1 2 n 

ũ  = [uT, uT , . . . ,  uT, +∞]T ∈ RN +dh , and 
similar to (16), and we can further relax the constraint to make 
the sub-problems unconstrained QP problems. For a scribbled 

1 2 n 
⎡

L1 + λ2 H TH1 −λ2 H T
⎤

 
1 1 . . . 

.. ⎥ 
image, we have 

min Ei = yT(Msmooth + λ1 Di)yi − 2λ1 y
T Di y

GMM
 ⎢ 

M̃  = 
⎢

 . ⎥ 
.
 yi 

i i i i ⎢ 
Ln + λ2 H T Hn −λ2 H T

⎥
 ⎣ 

1 n 
⎦ yi ys  T Ds yi − ys) 

−λ2 H1 · · ·  −λ2 Hn λ2nI  + λ0( − i ) i ( i 

i  Li yi − 2yi  Vi + Ci (19) 
(15) 

= yT  r
 T   r r 

When the number of all  superpixels is  small,  the  above 

QP  problem (14) can  be  solved  by using  some  constrained 

where  the  scribble  index  matrix  is  Ds   =  diag(y 
f  
+ yb) 

i i (representing). ys = y 
f 
· 1 + yb · 0, Lr = Msmooth + λ1 Di + Ds

 

i i i i i i , 
QP   optimization   algorithms,   such   as   interior-point  [10] V r = λ0 D

s ys , and Cr = λ0 y
s T 

ys , for i = 1, 2, . . .  , l. The 
i i   i i i i 

and   active-set   [5]   algorithm.   However,   the  computation 

of  these  algorithms  will  be  expensive  for     co-segmenting 
parameter λ0  should be large enough to keep the accuracy   of 
user scribbles. 
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Algorithm 1 Co-Segmentation by Hybrid  Optimization 
 

 
 

 

 

 

 

 
 

For an unscribbled image, the minimization can be 

formulated as: 

min Ei = yT(Msmooth + λ1 Di)yi − 2λ1 y
T Di y

GMM
 

class  from MSRC,  and 20 classes  with a varying number  of 

images per class from iCoseg in our experiments. We provided 

the new ground-truth images of 10 classes  from  MSRC,  

since the original ground-truth images  are  not  accurate 

enough for our experiments. Furthermore, we used the large-

scale image groups [36] for evaluating the computational 

efficiency of our approach, which include car (4347 images), 

horse (6381 images), and airplane (4542 images). 200 images 

with ground-truth from each group are randomly selected for 

experiments. In our experiments, the quantitative evaluation 

includes two performance metrics: precision P and Jaccard 

similarity J. P denotes  the  ratio  of  correctly labeled  pixels 

for both foreground and background, and J represents the 

intersection over union of the segmentation results and ground 

truth masks. These two metrics are commonly used for 

performance evaluations of image co-segmentation 

approaches. 
 

A. Parameter Settings 

There are some suggestions for our interactive method on 

how to add user scribbles. Some images with a complex 

background should be added scribbles first, since these images 

can provide more information to build GMMs and it is unnec- 

essary to add scribbles to images with a simple background 

such as the bottom images in Fig. 2. The scribble should 

contain as many colors as possible, so the regions with variable 

colors  inside  the  foreground/background  are  good  choices 

yi 
i i i i to  add  scribbles.  The  regions  with  similar  colors  between 

the foreground and  the background should be  scribbled.  The 
= yT Lr yi − 2λ1 y

T Di y
GMM, (20) user should add foreground (background) scribbles until these 

i i i i 

where Lr = Msmooth + λ1 Di , for i = l + 1, l + 2, ... , n. scribbles have contained most color  information. 
i i 

Based on (19) and  (20), we  can  get the  optimal solution  

of  yi  as follows: 

After adding scribbles, we setup the parameters of the mean- 
shift  pre-segmentation  algorithm  [8]  including  the    spatial 
bandwidth  hs   =  10,  the  range  bandwidth  hr   =  7,    and 

yi  = Lr−1   r the  minimum  size  of  final  output regions M 30. With 

i   Vi ,   i = 1, 2, . . .  , l, (21) ms  = 
yi = Lr−1 GMM 

i   Di yi ,   i = l + 1, l + 2, . . .  , n. (22) 

The threshold  t  =  0.5  is  used  to  get  the  binary  yi ,  

i.e., yi( j ) = 1,  if  yi( j )  ≥  0.5;  yi( j )  =  0, otherwise. 

We note Lr in (21) or (22) is invertible for i = 1, 2, . . .  , n. 
This proof is shown in Appendix B. It is worth  mentioning 

that our iterative optimization is guaranteed to converge. The 

theoretical proof is given in Appendix C. In our experiments, 

this iterative optimization usually converges after two or three 

iterations. Finally, we summarize the whole pseudo-code of 

the proposed algorithm in Algorithm  1. 

 
IV. EXPERIMENTAL RESULTS 

In this section, we evaluate the proposed co-segmentation 

method on many image groups. The qualitative and 

quantitative comparison results between the state-of-the-art 

algorithms and ours are given in the following sub-sections. 

We used two benchmark datasets: MSRC dataset [11] and 

iCoseg dataset [21], which have been widely used by previous 

work to evaluate the performance of image co-segmentation 

methods. Both datasets include the ground truth segmentation 

masks that are used for the quantitative evaluation. Then we 

randomly select  10 object classes  with about 30 images    per 

these parameters, this  algorithm is  able to segment out   most 

boundaries of images in the MSRC or iCoseg dataset. These 

initial segmentation based superpixels are sufficient for our 

experiments. We then extract the average color intensities of 

superpixels and make the 3D histograms with 20 bins in each 

dimension of the RGB color  space. 

Unless mentioned otherwise, we use the parameter settings 

of our approach as follows: K  = 6,  λ = 1e − 4,  λ0  = 1e5,  

λ1 = 1e3, λ2 = 1e − 7, and Tmax = 5. There are  some 
notations  for  selecting  these  parameters.  The  parameter  K 

can be set as a  small  value  (less  than 10), since  we  only  

use these 2K GMM guide scribbles for initialization. If the 

value of K is large, it may produce some error labels caused  

by GMM. As mentioned above, we should keep a small λ 

which is a pre-condition of our local smooth  energy,  and 

keep a large λ0 which guarantees the accuracy of the user 

scribbles. The parameter λ1 controls the GMM guide scribbles, 

which should be less than λ0. This setting is able to guarantee 

the accuracy of the user scribbles when the user and  the 

GMM give  different  labels  to  the  same  superpixel.  Then  

λ2 should be set to a small value to balance the three energy 

terms, since the value of inter-image energy is much larger 

than the other two  energies. 



 

 
 

 
 

Fig. 5. Co-segmentation  results on the panda1 set of images from iCoseg.  
The first column: input images. The second column: results by our algorithm 
without the inter-image energy. The third column: co-segmentation results by 
our full algorithm with the inter-image energy. The last column: ground truth. 
We run our algorithm on all 24 images and select 3 representative images for 
illustrating the advantage of the inter-image  energy. 

 

 
 

B. Analysis of Inter-Image Energy 

We demonstrate the  effectiveness  of  inter-image  energy 

by running our  algorithm  on  the  panda1  image  group  

(from iCoseg) with and without the inter-image energy in our 

total energy function. Since this algorithm without inter-image 

energy only includes the local  smooth  energy  (LSE)  and  

the global scribbled energy, we abbreviate this algorithm as 

LSE-GMM,   which   is   the    initialization   method   of    yi 

in Section III.E. Our full co-segmentation approach is then 

abbreviated as CHO (Algorithm 1). This panda1 group 

includes 24 images with a common object panda and the 

different complex backgrounds. Both of these algorithms 

perform well in most images in this group. The average 

precisions are 96.8% (LSE-GMM) and  98.2%  (CHO),  and 

the average Jaccard similarities are 92.4% (LSE-GMM) and 

95.8%   (CHO).   Therefore,   CHO   outperforms  LSE-GMM 

(+1.4% precision, +3.4% Jarccard similarity) in   quantitative 
comparison. 

In qualitative comparison, CHO also outperforms LSE-

GMM. We select nine representative images (Fig. 5) for the 

intuitive comparison. For some images, LSE-GMM loses 

some foreground regions or produces some redundant 

foreground regions. The second column in Fig.  5  shows  

these problems of LSE-GMM. The images in all rows show 

that some foreground regions  are  lost.  Almost  all  results  

by LSE-GMM contain redundant foreground regions  except 

for the third row. The third and fourth  columns  in  Fig.  5 

show the results of CHO and the ground truth. These two 

groups of segmentation mask images are almost the same, 

which indicates the outstanding performance of CHO in these 

images. 

The above problems of LSE-GMM may be  due  to  the  

next two reasons. The first one is because of the incorrect 

guiding scribbles. They are automatically  produced  by 

GMM, but GMM does not work  well  in  some  images  

where the foreground and background are extremely similar. 

Fig. 6 shows  examples of  such  incorrect guiding  scribbles. 

In Fig. 6 (b) and (d), the red superpixels in the yellow 

rectangles     indicate     the     incorrect     guiding    scribbles. 

 
 

 

 
 

 
Fig.   6.         Analyzing   the   incorrect   guiding   scribbles   of   LSE-GMM. 
(a) and (c) the segmentation results of LSE-GMM. (b) and (d) the labeled 
guiding scribbles by the global GMM, where the red regions indicate fore- 
ground and the green ones indicate background. The red labeled superpixels  
in the yellow rectangles of (b) and (d) are the wrong guiding scribbles. These 
incorrect guiding scribbles may appear in the regions where the background 
regions are extremely similar to foregrounds. 

 

 
These guiding scribbles may lead to more incorrect 

segmentation regions in their neighborhoods shown in the 

yellow rectangles of Fig. 6 (a) and (c). The other reason is  

that these images lack enough foreground object information. 

The GMM only labels the superpixels with highest posterior 

probability, which may lose some foreground object 

information. Thus, we add the histogram constraint to 

overcome these problems and the results in the third column  

of Fig. 5 show the performance with this inter-image energy 

item. In summary, our full co-segmentation approach (CHO) 

can  automatically  correct   the   incorrect  guiding  scribbles. 

It also offers more foreground information to each image for 

improving the final co-segmentation performance. 

 
C. Comparison With Single-Image Segmentation 

Our approach of interactive  co-segmentation  for  multi-  

ple images can also be  viewed  as  a  natural  extension  of  

the single-image segmentation via local spline regression 

(LSR) [22]. Naturally, we compare their method with our 

approach to verify the effectiveness. Furthermore, we also 

compare with other interactive single-image segmentation 

methods [7],  [16],  [33].  We  randomly  select  three  images 

as shown in Fig. 7 (a) from the MSRC dataset for exper- 

iments. There  are  similar  backgrounds  in  these  images, 

and some background regions are similar to the foreground 

object in a single image, such  as  the  road  regions  in  the 

first row of Fig. 7 (a). We directly run the source codes 

released by the authors to conduct their experiments with the 

recommended parameters. As shown in Fig.  7,  we  present 

the qualitative results between our approach and the other 

methods [7], [16], [22], [33], where our approach outperforms 

others using the same user scribbles. For example, LSR [22] 

generated unsatisfying boundary localization such as the 

second and third rows and produced some small noise regions 



 

 
 

 
 

Fig. 7.   Comparison results. (a) Input images with the same user scribbles. (b)-(e) Results by interactive single-image segmentation methods [7], [16], [22],   
and [33], respectively.  (f) Results by our  approach. 

 

Fig. 8.  Comparison results of [28], [29], and [36], and our co-segmentation approach. There are four class blocks in this figure. The first four classes: bear2,  
and Christ are from iCoseg.  The last two classes:  dog, and chair  are from the MSRC dataset.  In each block,  the first row  is the input images; the second,  
third and fourth rows are the results by the methods in [28], [29], and [36], respectively. The last row denotes the results by our approach. 

 

like the first row in Fig. 7 (e). This is due to the lack of global 

knowledge of the foreground and the background in the other 

images. As shown in Fig. 7 (f), our approach leverages this 

information, and provides better co-segmentation performance. 

D. Comparison With Other Co-Segmentation  Methods 

In this experiment, we used all previously selected image 

groups  (30  groups)  to  evaluate  our   method.  As   shown   

in  Fig.  8,  the  example  results  include  four  groups   where 



 

 

two groups are from iCoseg, and the other two groups are  

from MSRC. We selected five representative images from each 

class to illustrate the results. For example, in the bear group, 

the foreground object and parts of the background are similar. 

Some classes have similar backgrounds  such  as  Christ,  

while the size and color appearance of a common object are 

different in some classes such as dog and chair. Our approach 

successfully segmented the common objects from these 

images. Our co-segmentation results are shown in the last row 

of each block. We also compared our approach with the pre- 

vious unsupervised co-segmentation methods in [28] and [36] 

and the interactive so-segmentation method in [29]. The  

results of the unsupervised joint co-segmentation methods are 

offered by the authors in [36], who release their segmentation 

results of their method and several existing co-segmentation 

methods in their website. For the interactive co-segmentation 

method using random walks [29], we directly used the  

original implementations released by the  authors  to  obtain 

the co-segmentation results. As shown in Fig. 8, these three 

well-known methods perform well in some images but not so 

accurate in others. However, some of the background pixels 

are always incorrectly segmented into the foreground objects 

by these approaches. In contrast, our approach achieved more 

accurate segmentation results than the compared methods with 

same scribbles, since our approach has strong self-adaptability 

for complex natural images. In the following, we will analyze 

these three methods to explain the detailed  reasons. 

As mentioned before, Joulin et al. [28] proposed a co-

segmentation method by combining the spectral  clustering 

 

 
Fig. 9.  Comparison results  on iCoseg (top) and MSRC (bottom) between   
our method and other methods: Joulin12 [28], Rubinstein13 [36], and 
Collins12 [29]. The ratios  of  correctly  labeled  pixels  (both  foreground  
and background) are measured, and each plot shows the average per-class 
precision. 

 

TABLE I 
 

  

AVERAGE PRECISION ( P ) AND JACCARD SIMILARITY ( J ) 

and the discriminative clustering. The main idea is to  find    a    

classifier which is able to maximally separate the pixels of all 

images into k (here, we set k = 2) classes. This classifier 
works  well  for  the  images  that  have  small  variability    in 

background, such as the Christ. But when the background and 

foreground are similar or the background has large  variability 

(such as bear), it will fail to segment out the object. Moreover, 

this method performed not well for the classes with large 

variability in foreground, such as dog, and chair. This is due to 

that the classifier cannot classify these foregrounds as a class. 

Rubinstein et al. [36] proposed a joint object co-segmentation 

method by combining the saliency and the SIFT flow.  The  

key insight of this method is that a common object should      

be salient within each image. Therefore it performed well in 

the images with high saliency, such as the second images. 

However, the parts of background, such as the people in  the 

last image of the dog class, are also salient in some images, 

which lead this method to get incorrect segmentation results. 

Moreover, it cannot find the background regions which are 

inside the foreground, like the chair class, since these regions 

are salient in the images. Collins et al. [29] proposed an 

interactive co-segmentation method using random walks. Their 

method can segment out most background regions which are 

similar to the foreground in  visual features but are different  

in semantic features such as the stone balustrade in the third 

image of the  Christ  group.  These  regions  are  difficult  to  

be segmented out by unsupervised co-segmentation methods. 

However, this method also provided incorrect segmentation 

boundaries for some  complicated images, such  as bear,  dog, 

and chair. This may be due to that the united parameters are not 

suitable for all image classes. Thus, the unsuitable parameters 

may produce unexpected co-segmentation results. This method 

requires carefully tuning their parameters or tediously adding 

more scribbles to improve the co-segmentation  results. 

Furthermore, we quantitatively compare these above 

methods with our approach. Fig. 9 shows the per-class pre- 

cision on iCoseg (top) and MSRC (bottom). According to this 

figure, the precision of our approach is higher than that of 

other three methods in each class. The average precision of  

our approach on iCoseg (98.7%) is more than the one on 

MSRC (96.0%), which is due to that the images with high 

variability in MSRC are more complex than those in iCoseg. 

The complexity of images in groups may decrease the 

performance of our approach, especially on the bike class. 

Table I shows the accurate average precision and Jaccard 

similarity on iCoseg and MSRC. It appears that our approach 

has significant improvement over the previously proposed 

methods. 
 

E. Run Time 

In this  section,  we  depict  the  advantages  of  our 

approach    for    co-segmenting    the    images    in    terms of 
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TABLE II 

AVERAGE RUN TIME (SECONDS) ON iCOSEG (FIRST 20 ROWS) 

AND MSRC (LAST 10 ROWS) 
 

   

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
   

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
   

 
TABLE III 

RUN TIME (SECONDS) ON LARGE-SCALE GROUPS OF IMAGES 

 
   

 

 
 

 

 
 

 

 

 
   

 

computational    efficiency.    All    the    run    time     values 

in Tables II and III are measured in seconds on a Dell 

Precision T5600 workstation with Intel Xeon Processor E5-

2680 CPU and 64GB RAM. We  first run our approach  and 

the other two  co-segmentation  methods  [28],  [29]  on all  

previously  selected  image  groups  MSRC.  The   authors 

TABLE IV 

AVERAGE PRECISION ( P ) AND JACCARD SIMILARITY ( J ) ON 

LARGE-SCALE IMAGE GROUPS 

 

 
 
 

57.4 seconds to co-segment 200 images in  average,  which 

was much faster than the method in [24]. Especially for the 

airplane images, we  only  required 37.5  seconds.  This  may 

be due to that the sky background was over-segmented to 

fewer superpixels. Moreover, our approach also outperforms 

their method in both average precision and Jaccard similarity, 

which are shown in Table  IV. 

 
V. CONCLUSION 

In this work, we have presented a new framework for 

solving the interactive co-segmentation problem based on 

energy optimization. The proposed energy function consists  

of the global energy and the local energy. Our global energy 

successfully captures the information of user scribbles and the 

common foreground object in all related images. Our local 

energy is based on spline regression with adaptability to the 

complex natural images. An efficient iterative optimization 

algorithm is proposed to solve the proposed energy function 

for computation efficiency, which is able to process large- 

scale image sets. The experimental results have shown that  

our approach outperforms the previous co-segmentation 

methods by both quantitative and qualitative performance 

measurements. In future work, we will extend this framework 

to multi-class image or video co-segmentation [35], where the 

spatial-temporal coherence should be considered carefully. 

 
APPENDIX: IMPLEMENTATION DETAILS 

In this section, we describe our exact formulations of spline 

regression with more detailed explanations for  completeness. 

 
A. Details of Spline Regression 

This sub-section discusses how to transform (4) to (5). 

Firstly, we recall up  (4): 

ki 

of   [29]   have   provided  the   CPLEX   solver   based source 

code, where the memory requirement increases sharply with 

large-scale groups of images. Due to the limited    memory on 

J(gi) = 
. 
 

j =1 

(zi  − gi(ci ))
2

 + λS(gi). 

our workstation, we divided the big groups into subgroups (8-

10 images)  for  running  their  code.  We  run  the  method in 

[28] and our approach  on  a  whole  group.  The  average run 

time  is  shown in  Table  II,  which demonstrates that   our 

According to  [1], we  use  a  semi-norm to  define S(gi). Then 

the minimizer gi  will be given  by 
d ki 

gi(c) = 
. 

βi, j p j(c) + 
. 

αi, j φi, j (c), (23) 

approach is much faster than the other two   methods. 
Further,  we  evaluate  the  computational  efficiency  of our 

j =1 j =1 

approach  on  the  large-scale  image  groups  (car,  horse, and where   t    = C
s−1

 1   =  (d  + s  − 1)!/(d!(s  − 1)!)    and 

airplane). We compare with the other large-scale 

. 
p  (c)

.T
 

j =1 

d +s− 

are  a  set  of  primitive  polynomials  which  can 

co-segmentation    method    [24]    instead    of    the     above 

two methods without scalability (i.e., the memory requirement 

of them is beyond our computation capability). Table III  

shows  the  statistics  of  run  time.  Our  approach      required 

span   the   polynomial   space   with   a   degree   less   than s. 

Here s is the order of the partial derivatives in the semi- 

norm  [2].  αi  =  [αi,1, αi,2, ..., αi,ki ]
T  ∈  Rki and  βi  = [βi,1, 

βi,2, ..., βi,t ]T ∈ Rt  are the coefficients concerning 
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superpixel ci . φi, j (c) is a Green function [1], which is  defined 2s−d eigenvector  is  constant  [3].  Since  Msmooth1 = 0,  ui1  = 1. 
smooth 

by:  φi,j(c)  = (  c − ci j   ) log(  c − ci j    ),  if  d   is even; For  simplicity,  we  denote   Lr   =   M +  Di , where   
2s−d i i 

˜
 ˜ s ˜ Di = λ1 Di + D , i = 1, 2, . . .  , l, Di = λ1 Di, i = l + 1, 

φi,j(c) = ( c − ci j   ) , if d is odd. i 
i  D̃

 i yi   “  0,  for 
There are at most ki equations by substituting the ki features l + 2, ... , mi .  It  is  easy  to  find  that yT 

in the neighborhood Ni into (23). Thus, t new equations are 

introduced [22] to solve ki + t  coefficients:  Piαi  = 0, where 

Pi  ∈ Rt ×ki  collects the values of the primitive    polynomials 

i   =  1, 2, . . . , mi ,  since   D̃ i   is  a  diagonal  matrix  and  the 
diagonal elements are nonnegative. 

We  show  the  matrix  Lr  is  positive  definite,  i.e.  for any 
in  

. 
p j(c)

.T 
with  the  ki   features  in  neighborhood  Ni   as nonzero  vector  yi   ∈  Rmi ,  yT  r  

i 

 input. For j =1  e,  when d  3  and s  2,  t  equals  to 4 
 

following two situations: i  Li y >   0.  We   discuss  the 

exampl = = 
i  D̃

 i yi     > 0.   Under   this   situation,   yi  Li yi     = 
and c is denoted as c = [c(1), c(2), c(3)]T. Then the  primitive 1. yT T  r 

polynomials will  be  p1(c)  = 1,  p2(c) = c(1),  p3(c)  = c(2), 
T smooth 

yi  Mi yi 
+ yT Di yi 

i  
˜ > 0, since yT Msmoothyi i i “ 0. 

p4(c) = c(3). We  only use  the  conditions: d  = 3  and  s  = 2 2. yT Di yi  = 0.  We  can  set  yi  = 
.mi

 βij uij ,  since the 
 

for computational simplicity in our  approach. 
i  

˜ 
eigenvectors are linearly independent. 

j =1 
˜
 

Combining the ki  equations derived from (23),  we have According to spectral decomposition of a  matrix, we   have 
smooth .mi

 
T.   Then,  yT smooth .

Ki + λI PT
. .

αi 

.
 .

Zi 

. Mi = j =1 λ̃
 
i j ui j ui j  i  Mi yi = 

i 
Pi 0 βi   

= 
0   

, (24) 
.mi

 

j =1 β̃i j λ̃ ij (u
Tuij  )(uTuij  ),    since    the    eigenvectors   are 

orthogonal. If yT Msmoothyi = 0, then for  j = 2,..., mi , i i 

where  Ki  is  a  ki  × ki  symmetrical  matrix  with  rr th  row β̃i j  = 0,  since  λ̃ i j  > 0,  uTui j  > 0.  So  yi  = β̃i1ui1  = β̃i11. 
and   ccth  column  element   Krr,cc    =   φi,cc(cirr ).   Zi   = ki However   yT D̃ i yi   = i11 T D̃ i 1   >   0,  which  violates  the 
[zi1 , zi2 , . . .  , ziki 

]T ∈ R collects the labels of the ki super- condition yT T smooth 

pixels in  Ni , and  I  is a ki × ki  identity matrix. i  D̃
 i yi   =  0.  Thus,   yi  Mi yi   >   0.  Then 

i  
L

i 
yi  = y

i  
Msmooth T 

According to [2], the regularized loss minimization  J(gi(c)) yT  r T   
i yi + yi D̃ i yi  > 0. 

can be approximately evaluated in  (4): For any nonzero vector  yi  ∈ Rmi , we  have  yT    r 

 
ki 

J(gi) ≈ 
. 

(zi j − gi(cij )) 

j =1 

 

+ λαi  Kiαi. (25) 

i  Li yi  >  0, 
i.e. the matrix Lr is positive definite and  invertible. 

 
C. Convergence of the Iterative Optimization 

Proof:  The  energy  function  E(Ỹ )  in  (14)  corresponds 
According   to (24),    the    conditions   zi j = gi(cij ), 

j  = 1, 2, ... , ki  can be approximately satisfied,  when λ 
is  small  enough. This indicates that  the first  term in  (4) can 

to  a  bound-constrained QP  problem. Obviously, this  energy 

function is a convex function. So we only need to guarantee 

the  energy  does  not  go  up  at  each  iteration,  i.e.,  E(Ỹ0)  “ be treated as  zeros. Then, we have  J(gi) ≈  λαT Kiαi . ˜ ˜ ˜ ˜ 
i 

Theorem 1: For a small λ the regularized loss minimization 
can be evaluated in terms of class label   vector: 

J(gi) ≈ λZ T Mi Zi, (26) 

where Mi is the upper left ki × ki submatrix of the inverse 
matrix of the coefficient matrix in  (24). 

Proof: Based on (24), we have (Ki +λI )∗αi + PTβi  = Zi , 

Pi    ∗ αi  = 0. Note that Mi  is the upper left ki × ki submatrix 

E(Y1) “ E(Y2) “ · · · “ E(Y ∗),  where  Yt  is  the  solution  at 

the  t − th  iteration,  Ỹ0  is  the  initial  solution,  and  Ỹ ∗ is  the 
optimizing solution. Then the iterative optimization algorithm 

will converge. Note that we process each image with a 

coordinate sequence at each iteration, and we  then  perform 

the following two steps for each image. The first step is to 

optimize the sub-problem in (16), and the second step is to 

update the global foreground histogram. Then we can   denote 

Eti(yi)  and  Eˆ ti(h)  as  the  total  energy  after  two  steps for 
of the inverse matrix of the coefficient matrix in (24). Then, 

the solution of (24) includes αi  = Mi  Zi . 

image i  at t  iteration. 

Note  that   y j ,   j = 1, 2, . . .  , n,   Ê  ti (h)  will  be the 
It follows that αT(Ki + λI) ∗ αi + αT PTβi = αT Zi =⇒ optimizing  value  of  E(Ỹ ).  Then  we  have  E   (y )  “  Ê  (h). 

i i i i ti    i ti  
i (Ki + λI) ∗ αi = Zi Mi Zi . The last equality holds since Similarly, we can get Ê  ti (h) “ Et(i+1)(yi+1). Then we have 

αT T 

Mi  is  a  symmetrical  matrix.  Thus,  for  a  small  λ,  we have Et(i+1)(yi+1) “ Eti(yi). According to our iterative  steps, 
J(gi) ≈ λαT Ki ∗ αi ≈ αT Kiαi + λ2αTαi = Z T Mi Zi . it  is  easy  to  find  that  E(Ỹ ) = Ê  (h) “ E (y ) “ 

i i i i t −1 (t −1)n t 1    1 

 

B. Invertibility of  Lr in (21) or  (22) 
Proof:  We   first  introduce  some  properties  of   Lr 

 

 
and 

Et 2(y2) “ · · ·  “ Etn(yn) “ 

E(Ỹt ) for t = 1, 2, · · · . 
Ê tn  =  E(Ỹt ),  i.e.  E(Ỹt −1)  “ 

some  denotations.  Since  the  matrix Msmooth
 

i 

is  a Laplacian 
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