Unsupervised local feature hashing for image similarity search

Liu, Li, Yu, Mengyang and Shao, Ling (2016) Unsupervised local feature hashing for image similarity search. IEEE Transactions on Cybernetics, 46 (11). pp. 2548-2558. ISSN 2168-2267

[thumbnail of Published manuscript]
Preview
PDF (Published manuscript) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

The potential value of hashing techniques has led to it becoming one of the most active research areas in computer vision and multimedia. However, most existing hashing methods for image search and retrieval are based on global feature representations, which are susceptible to image variations such as viewpoint changes and background cluttering. Traditional global representations gather local features directly to output a single vector without the analysis of the intrinsic geometric property of local features. In this paper, we propose a novel unsupervised hashing method called unsupervised bilinear local hashing (UBLH) for projecting local feature descriptors from a high-dimensional feature space to a lower-dimensional Hamming space via compact bilinear projections rather than a single large projection matrix. UBLH takes the matrix expression of local features as input and preserves the feature-to-feature and image-to-image structures of local features simultaneously. Experimental results on challenging data sets including Caltech-256, SUN397, and Flickr 1M demonstrate the superiority of UBLH compared with state-of-the-art hashing methods.

Item Type: Article
Uncontrolled Keywords: hashing,image similarity search,local feature,unsupervised learning
Faculty \ School: Faculty of Science > School of Computing Sciences
Related URLs:
Depositing User: Pure Connector
Date Deposited: 31 Jan 2017 02:18
Last Modified: 03 Jul 2023 10:30
URI: https://ueaeprints.uea.ac.uk/id/eprint/62235
DOI: 10.1109/TCYB.2015.2480966

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item