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Abstract—The potential value of hashing techniques has led to
it becoming one of the most active research areas in computer
vision and multimedia. However, most existing hashing methods
for image search and retrieval are based on global feature rep-
resentations, which are susceptible to image variations such as
viewpoint changes and background cluttering. Traditional global
representations gather local features directly to output a single
vector without the analysis of the intrinsic geometric property
of local features. In this paper, we propose a novel unsuper-
vised hashing method called unsupervised bilinear local hashing
(UBLH) for projecting local feature descriptors from a high-
dimensional feature space to a lower-dimensional Hamming space
via compact bilinear projections rather than a single large projec-
tion matrix. UBLH takes the matrix expression of local features
as input and preserves the feature-to-feature and image-to-image
structures of local features simultaneously. Experimental results
on challenging data sets including Caltech-256, SUN397, and
Flickr 1M demonstrate the superiority of UBLH compared with
state-of-the-art hashing methods.

Index Terms—Hashing, image similarity search, local feature,
unsupervised learning.

I. INTRODUCTION

LEARNING to hash has received substantial attention
due to its potential in various applications such as data

mining, pattern recognition, and information retrieval [1]–[7].
Compact hashing enables significant efficiency gains in both
storage and retrieval speed for large-scale databases. Generally
speaking, greedy-searching-based retrieval on a data set with
N samples is infeasible because linear complexity O(N)

is not scalable to realistic applications on large-scale data.
Meanwhile, most vision tasks also suffer from the curse
of dimensionality, because visual descriptors usually have
hundreds or even thousands of dimensions. Due to above rea-
sons, hashing techniques are proposed to effectively embed
data from a high-dimensional feature space into a similarity-
preserved low-dimensional Hamming space where an approx-
imate nearest neighbor (ANN) of a given query can be found
with sublinear time complexity.
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Fig. 1. Comparison of a global representation-based hashing method and
our proposed method for relatively complex scene retrieval. The top figure
shows the top four retrieved images using GIST features with ITQ approach
which is regarded as one of the state-of-the-art hashing methods. The bot-
tom figure shows the retrieved images via SIFT+UBLH. The result illustrates
GIST+ITQ cannot return images with detailed information as in the query
image. Compared with global representation based hashing, our method is
more robust for complex object/scene retrieval tasks.

Currently, both conventional unsupervised and supervised
hashing algorithms are primarily designed for global repre-
sentations, e.g., GIST [8]. For realistic visual retrieval tasks,
however, these global hashing techniques cannot cope with
different complications appearing in the images such as clut-
tering, scaling, occlusion, and change of lighting conditions.
However, these aspects are more invariant in local features-
based representations such as bag-of-features [9], [10], since
such representations are statistical distributions of image
patches and tend to be more robust in challenging and
noisy scenarios. Fig. 1 illustrates the comparison of a
global representation-based hashing method (GIST+ITQ)
and our proposed local feature-based hashing method
[SIFT+unsupervised bilinear local hashing (UBLH)] for rela-
tively complex scene retrieval. We can observe that the top four
retrieved images via GIST+ITQ only contain the desert. They
are indeed relevant to the query image, but not exactly what
we want to search. While, the top four retrieved images via
our approach, i.e., SIFT+UBLH, include all the detailed infor-
mation, i.e., man, camel, and desert, as in the query image.
The possible reason of the difference on the above retrieval
task is that global representation-based hashing methods are
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Fig. 2. Working flow of UBLH learning. The algorithm intends to preserve the pairwise structure and the I2I distances and outputs the optimal bilinear
orthogonal projection matrices �1 and �2.

good at extracting the global intensity, color, texture, and
gradient information of images, but will ignore the detailed
information in the query image without analyzing the intrinsic
geometric property of local features. This problem may heavily
limit the effectiveness on applications that demand more accu-
rate retrieval results for complex scene/object images. Thus,
inspired by advantages (e.g., invariance for cluttering, scaling,
and occlusion) of local representations, in this paper, we intend
to develop a local feature-based hashing method for improving
the retrieval results. If keypoints are well detected, local hash
codes are able to avoid the limitations such as background
variations, occlusions, and shifts in global representations.

In this paper, we propose an UBLH framework for
large-scale visual similarity search, in which the feature-to-
feature (F2F) and image-to-image (I2I) structures are success-
fully combined and preserved together. Specifically, the F2F
structure considers the pairwise relationship between local fea-
tures in the original feature space, which is always considered
in manifold learning techniques [11]–[16]. From a higher-level
aspect, I2I structure reflects the connection between images
when each of them is represented by a set of local features.
In particular, the I2I distance can provide a feasible way to
measure the connection between two images, which is derived
from [17]. It measures the distance between two images using
the set representation of local features of the image. Since the
raised problem of UBLH is regarded as nonconvex and dis-
crete, our objective function is then optimized via an alternate
way with relaxation.

Furthermore, motivated by [18]–[20], a bilinear projection
is employed to make the algorithm more efficient. To be spe-
cific, the bilinear projection applies two projection matrices to
local features, which have much smaller sizes than the original
single projection matrix. Since the computational complexity
of eigen decomposition is cubic degree on the dimension of
the matrix, the effect of applying smaller matrices is quite
conspicuous. Beyond that, most local features are based on

histograms and bins, e.g., an SIFT feature is computed from
16 histograms, each of which has eight bins. Therefore, the
bilinear scheme can explore two different kinds of data struc-
ture from the views of histograms and bins simultaneously.
More crucially, when local features are transformed from the
vector form to the matrix form, a factorization of integral for
dimensionality is needed. These two different views provide a
natural factorization.

The outline of our proposed UBLH is demonstrated in
Fig. 2. Considering that our method is specifically designed
for local feature-based hashing, the original Hamming ranking
and Hamming table cannot be directly applied on local fea-
tures for visual indexing. Thus, in this paper, we also introduce
an image indexing/searching scheme called local hashing vot-
ing (LHV), which has been demonstrated to be efficient and
accurate for image similarity search in our experiments.

This paper aims at unsupervised linear (bilinear) hashing
for local features, which makes UBLH effective and practi-
cal for real-world applications without class label information.
With the bilinear projection learning, the complexity of the
eigen decomposition, which is the cubic form of the dimen-
sionality, will be significantly reduced. Once the projections
are learned, they can be efficiently used on the test data.
Additionally, UBLH simultaneously preserves the F2F and
I2I structures which can be regarded as the local and global
structures respectively in the original feature space.

II. RELATED WORK

In terms of bilinear hashing, Gong et al. [18] applied the
bilinear scheme to the global representations by minimizing
the angles between the rotated features and the correspond-
ing binary codes. Although this scheme can effectively solve
the high-dimensional hashing problem with less computational
complexity, it still has some deficiency in the optimization pro-
cess. Specifically, the angle between the vector in a continuous



2550 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 11, NOVEMBER 2016

space and that in a discrete space would bring quantiza-
tion errors in the optimization. Moreover, their scheme lacks
considering the relationship among features.

To explore hashing in the early time, random projections
are always used to construct randomized hash functions.
A most well-known representative is locality-sensitive hash-
ing (LSH) [21], [22], which can preserve similarity infor-
mation and map data points close in a Euclidean space to
similar codes. It is theoretically guaranteed that as the code
length increases, the Hamming distance between two codes
will asymptotically approach the Euclidean distance between
their corresponding data points. Furthermore, a kernel trick,
which allows the use of a wide class of similarity functions,
was combined with LSH to generalize LSH with arbitrary ker-
nel functions [23]. Beyond that, principled linear projections
such as PCA hashing (PCAH) [24] and its rotational vari-
ant have been introduced for better quantization rather than
random projection hashing. Spectral hashing (SpH) [25] was
proposed to preserve the data locality relationship to keep
neighbors in the input space as neighbors in the Hamming
space. Anchor graphs hashing (AGH) [26] is adopted to obtain
tractable low-rank adjacency matrices for efficient similarity
search. Kernel reconstructive hashing [27] was proposed to
preserve the similarity defined by an arbitrary kernel using
compact binary code. Compressed hashing (CH) [28] has been
effectively applied for large-scale data retrieval tasks as well.
All these hashing techniques mentioned above are regarded as
unsupervised methods which may lead to worse retrieval pre-
cision for the data sets with noise. To achieve better results,
researchers have developed supervised hashing methods which
could attain higher search accuracy, since the label information
is involved in the learning phase. A simple supervised hashing
method is linear discriminant analysis hashing (LDAH) [29]
which can tackle supervision via easy optimization but still
lacks adequate performance due to the use of orthogonal pro-
jection in hash functions. Beyond that, some more complicated
methods have been proposed such as binary reconstructive
embeddings (BRE) [30], minimal loss hashing (MLH) [31],
and kernel supervised hashing (KSH) [32]. Although these
supervised methods can achieve promising results, they impose
difficult optimization with slow training mechanisms. It is
noteworthy that all of methods mentioned above only can be
utilized with global representations.

An early work of applying local features to image detec-
tion and retrieval was proposed in [33]. Based on LSH,
Joly and Buisson [34] proposed a multiprobe LSH for ANN
search to improve the local feature-based retrieval tasks [35].
Another ANN algorithm was introduced in [36] to speed up
the searching algorithm and find the best algorithm configura-
tion for various data sets. Although a hybrid hashing method
for SIFT descriptors was proposed in [37], the relationships
between local features are not included in the code learning
phase.

The main work for embedding local features to the
Hamming space was proposed in [38]. In particular, two
schemes are introduced to improve the standard bag-of-
words (BoW) model: 1) a Hamming embedding (HE)
which provides binary signatures to refine visual words and

2) a weak geometric consistency constraint with the geometri-
cal transformation. Both methods can significantly improve
the final performance for retrieval tasks. Furthermore, a
coupled multi-index framework was proposed for accurate
image retrieval [39]. Beyond that, a selective match kernel
approach [40] has also been developed to incorporate matching
kernels sharing the best properties of HE and vector of locally
aggregated descriptors (VLAD). Another related work based
on [38] can be seen in [41], which introduces a color binary
descriptor being calculated in either a global or a local form.

However, all the above embedding methods mainly focus
on the retrieval techniques rather than the learning procedure
of the binary coding for large-scale hashing. Besides, these
methods are not fully linear, which limits their efficiency and
applicability for large-scale data sets. In fact, one of the most
related work using bilinear projection on local feature hash-
ing can be found in [42], which is regarded as a supervised
learning method for image similarity search.

III. UNSUPERVISED BILINEAR LOCAL HASHING

In this section, we first introduce the bilinear scheme [18] to
present our algorithm. Then we illustrate how the F2F and I2I
structures are preserved in UBLH. An alternate optimization
is used for learning the bilinear projections for hash codes.

A. Notations and Problem Statement

We are given N local features x1, . . . , xN ∈ R
D from

n images. For image i, we use Xi = {xi1, . . . , ximi} to rep-
resent its local feature set. Bilinear projection is to multiply
projection matrices on both sides of data. It can explore the
matrix structure of features to enhance the effectiveness of
projection. First, we factor integer D as D = D1 × D2. Then
we reorganize vector xi into matrix Xi ∈ R

D1×D2 such that
vec(Xi) = xi, where vec(·) represents the vectorization of
a matrix. And we also have the inverse map of vectoriza-
tion vec−1(xi) = Xi, since the vectorization is a one-to-one
correspondence if D1 and D2 are given. To make the trans-
formation more efficient, in this matrix form of local features,
we define our hash function using two matrices �1 ∈ R

D1×d1

and �2 ∈ R
D2×d2

H(Xi) = sgn
(
vec
(
�T

1 Xi�2
)) ∈ {−1,+1}d1d2 . (1)

In fact, we notice that vec(�T
1 Xi�2) = (�T

2⊗�T
1 )vec(Xi) =

(�T
2 ⊗�T

1 )xi, where ⊗ is the Kronecker product, thus a bilin-
ear projection is simply a special case of the single matrix
projection � which can be decomposed as � = �2 ⊗ �1.
Besides, it is easy to show that if �1 and �2 are orthog-
onal, i.e., �T

1 �1 = Id1×d1 and �T
2 �2 = Id2×d2 , then � is

orthogonal, as well. The bilinear projection leads to a more
efficient eigen decomposition on matrices with much smaller
sizes D1 × D1 and D2 × D2 rather than D1D2 × D1D2 for
single projection. Additionally, the space complexity for bilin-
ear projections is O(D2

1 + D2
2), while the single one needs

O((D1 × D2)
2). Besides, since most of the local features are

represented as concatenated histogram vectors, they can be
intrinsically decomposed by two data structures. For instance,
128-dim SIFT is computed on 4 × 4 grids and for each grid
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a 8-bin histogram is calculated. In this way, a 128-dim SIFT
is formed by concatenating 16 × 8-bin histograms. Thus, for
SIFT feature, we can naturally decomposed it via 16 × 8 in
our bilinear codes learning.

Note that during the learning stage, we use {−1,+1} to
represent the output of hash functions and employ centralized
data xi−(1/N)

∑N
j=1 xj instead of xi, ∀i. In the indexing phase,

we use {0, 1} to represent codes for hash lookup.

B. Feature-to-Feature Structure Preserving

To obtain meaningful hash codes for local features, let us
first consider the geometric structure of the entire local feature
set F = {X1, . . . , XN}. We are concerned about the individ-
ual relationship between local features in the high-dimensional
space, which should also be retained in the lower-dimensional
space. Specifically, for similar (dissimilar) pairs, their distance
is expected to be minimized (maximized) in the Hamming
space. Since the class labels are unavailable for unsuper-
vised method, we first employ K-means clustering on F to
obtain some weak label information. Then the pairwise label
of (Xi, Xj) is defined as

�ij =
{+1, Xi and Xj are in the same cluster
−1, otherwise.

(2)

Since different pairs have different importance in the embed-
ding, for pair (Xi, Xj), we assign a weight which is related to
the pairwise distance with parameter σ

wF
ij = exp

(

−�ij + 1

2σ 2

∥∥Xi − Xj
∥∥2 + �ij − 1

2σ 2
∥∥Xi − Xj

∥∥2

)

(3)

where ‖·‖ is Frobenius norm. We can find that wF
ij ∈ (0, 1) and

for a positive pairwise label, wF
ij is decreasing as the distance

‖Xi−Xj‖ increases and vice versa. In other words, the positive
pair is more important when they are close to each other, and
the negative pair is more important when they are far away
from each other. We denote P = {(i, j)|Xi, Xj ∈ F}. Therefore,
preserving the F2F structure is to maximize

∑

(i,j)∈P
wF

ij�ij
〈
H(Xi), H

(
Xj
)〉
. (4)

The above function reaches its maximum value when
wF

ij�ijH(Xi) and H(Xj) are similarly sorted due to the rear-
rangement inequality [43].

C. Image-to-Image Structure Preserving

Now we take a higher level connection, i.e., the relation-
ship between images, into account since source information is
also crucial to local features. For image i, we still use Xi to
represent the local feature set {Xi1, . . . , Ximi} in matrix form.
Derived from [17], the I2I distance from image i to image j
is defined as

dij =
∑

X∈Xi

∥∥X − NNj(X)
∥∥2 (5)

where NNj(X) is the nearest neighbor of the local feature X in
image j. Although the number of local features in one image is
much smaller than N, the nearest neighbor search (NN-search)

for all images is still time-consuming. We hope to use the clus-
ter information in the above F2F section for the reduction of
complexity. We denote the clusters of the K-means clustering
on F by C1, . . . , CK . Without loss of generality, supposing the
local features of image j are in C1, . . . , CK1 and the order of
distances from corresponding centroids to X ∈ Xi is from near-
est to farthest, then the range of NN-search in Xj is reduced
to (C1 ∪ · · · ∪ C�(K1)

δ�) ∩ Xj, where 0 < δ < 1 and �·� is
the ceiling function. This reduction of range is based on the
assumption that the centroid of the cluster where the true neat-
est neighbor locates is also close to X. In fact, it holds when
K → N. After the reduction of searching range, the average
complexity is reduced from O(N2) to O(NK1+δ) and we only
need to compute the distances from X to the cluster centroids,
which has been done in the K-means.

In a general situation, dij �= dji. Thus, to ensure symmetry,
we update the I2I distance as

Dij = 1

2

(
dij + dji

)
. (6)

Via a Gaussian function, we have the following I2I similarity:

wI
ij = exp

(

− D2
ij

2σ 2
I

)

, i, j = 1, . . . , n (7)

where σI is the smooth parameter. After applying UBLH, we
have the I2I distance in the Hamming space

D̂ij = 1

2

⎛

⎝
∑

X∈Xi

∥∥H(X)− NNj(H(X))
∥∥2

+
∑

X∈Xj

‖H(X)− NNi(H(X))‖2
⎞

⎠. (8)

To preserve the I2I structure of the original space, a reasonable
objective function is to minimize

n∑

i=1

n∑

j=1

D̂ij · wI
ij. (9)

The above function reaches the minimum value when {D̂ij} and
{wI

ij} are oppositely sorted due to the rearrangement inequal-
ity [43]. With the F2F part in (4) and orthogonal constraints
on �1 and �2, i.e., �T

1 �1 = I and �T
2 �2 = I, we have the

final optimization problem

arg max
�T

1 �1=I
�T

2 �2=I

∑

(i,j)∈P
wF

ij�ij
〈
H(Xi), H

(
Xj
)〉− λ

n∑

i=1

n∑

j=1

D̂ij · wI
ij

(10)

where λ is the balance parameter.

D. Alternate Optimization Via Relaxation

In this section, we derive the projections of the optimiza-
tion problem (10). Motivated by [25] and [32], to gain an
optimal solution, we first relax the discrete sign function to a
real-valued continuous function by using its signed magnitude,
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i.e., sgn(x) ≈ x. In this case, the objective function of the F2F
part, i.e., (4) becomes
∑

(i,j)∈P
wF

ij�ij
〈
vec
(
�T

1 Xi�2
)
, vec

(
�T

1 Xj�2
)〉

=
∑

(i,j)∈P
wF

ij�ij Tr
((

�T
1 Xi�2

)(
�T

1 Xj�2
)T)

=
∑

(i,j)∈P
wF

ij�ij Tr
(
�T

1 Xi�2�
T
2 XT

j �1

)
. (11)

Besides, we also make a statistical approximation on the
computation of projected I2I distances due to the large number
of local features. In other words, we exchange the operation
of NN-search and H(·) for all X ∈ Xi during the optimiza-
tion, i.e.,

∑
X∈Xi
‖H(X) − NNj(H(X))‖2 ≈ ∑

X∈Xi
‖H(X) −

H(NNj(X))‖2. In fact, the pairwise structure has been pre-
served in the F2F objective function (4), which ensures the
correctness of the exchange operation. Hence, the projected
dij in (5) becomes

d̂ij ≈
∑

X∈Xi

∥
∥�T

1 X�2 −�T
1 NNj(X)�2

∥
∥2

=
∑

X∈Xi

∥∥�T
1

(
X − NNj(X)

)
�2
∥∥2

=
mi∑

k=1

Tr

(
�T

1 �Xj
ik�2

(
�T

1 �Xj
ik�2

)T
)

=
mi∑

k=1

Tr

(
�T

1 �Xj
ik�2�

T
2

(
�Xj

ik

)T
�1

)
(12)

where �Xj
ik := Xik − NNj(Xik), k = 1, . . . , mi, i, j = 1, . . . , n.

And we also have the similar derivation for dji. Then the
projected I2I distance D̂ij can be written as

1

2

( mi∑

k=1

Tr

(
�T

1 �Xj
ik�2�

T
2

(
�Xj

ik

)T
�1

)

+
mj∑

k=1

Tr

(
�T

1 �Xi
jk�2�

T
2

(
�Xi

jk

)T
�1

))

. (13)

Since it is a nonconvex optimization problem, to the best of
our knowledge, there is no direct way to output the projections
�1 and �2 simultaneously. We derive an alternate iteration
algorithm to update one projection when given the other, i.e.,
we optimize �1 when �2 is fixed and we fix �1 to update
�2 iteratively. Combined with (11) and (13), let us denote the
objective function by

L(�1,�2)

=
∑

(i,j)∈P
wF

ij�ij Tr
(
�T

1 Xi�2�
T
2 XT

j �1

)

− 1

2
λ

( mi∑

k=1

wI
ij Tr

(
�T

1 �Xj
ik�2�

T
2

(
�Xj

ik

)T
�1

)

+
mj∑

k=1

wI
ij Tr

(
�T

1 �Xi
jk�2�

T
2

(
�Xi

jk

)T
�1

))

.

(14)

Algorithm 1 Unsupervised Bilinear Local Hashing
Input: The local feature set F of training images, the num-

ber of centroids K in the K-means, the parameter δ

for the NN-search in the I2I distance and the balance
parameter λ.

Output: The bilinear projection matrices �1 and �2.
1: Preprocessing: centralize xi ← (xi − 1

N

∑N
j=1 xj), i =

1, . . . , N;
2: Transform all the local features xi into matrix form Xi,

i = 1, . . . , N;
3: Employ K-means clustering on F ;
4: Construct local feature pairing set P and their correspond-

ing pairwise labels �ij according to Eq. (2);
5: Compute F2F weight wF

ij and I2I similarity wI
ij by Eqs. (3)

and (7), respectively;
6: Initialize �2 randomly;
7: repeat
8: �1 ← the eigenvectors corresponding to the largest d1

eigenvalues of M2(�2) by Eq. (15);
9: �2 ← the eigenvectors corresponding to the largest d2

eigenvalues of M1(�1) by Eq. (16);
10: until L(�1,�2) converges.
11: return �1 and �2.

By simple algebraic derivation, we have the following form:

L(�1,�2) = Tr
(
�T

1 M2(�2)�1
) = Tr

(
�T

2 M1(�1)�2
)

where

M2(�2) =
∑

(i,j)∈P
wF

ij�ijXi�2�
T
2 XT

j

− 1

2
λ

mi∑

k=1

wI
ij�Xj

ik�2�
T
2

(
�Xj

ik

)T

− 1

2
λ

mj∑

k=1

wI
ij�Xi

jk�2�
T
2

(
�Xi

jk

)T
(15)

and

M1(�1) =
∑

(i,j)∈P
wF

ij�ijX
T
j �1�

T
1 Xi

− 1

2
λ

mi∑

k=1

wI
ij

(
�Xj

ik

)T
�1�

T
1 �Xj

ik

− 1

2
λ

mj∑

k=1

wI
ij

(
�Xi

jk

)T
�1�

T
1 �Xi

jk (16)

are two symmetric matrix-valued functions with their
codomains R

D1×D1 and R
D2×D2 , respectively. Consequently,

for fixed �1, the optimal �2 is given as the eigenvectors
corresponding to the largest d2 eigenvalues of M1(�1), and
likewise, for fixed �2, the optimal �1 is given as the eigen-
vectors corresponding to the largest d1 eigenvalues of M2(�2).
Although the number of the local features is usually huge, the
sizes of our final matrices M1 and M2 used for decomposi-
tion are small enough (D1 and D2 are always less than 100).
This property mainly guarantees the efficiency and feasibility.
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Fig. 3. Illustration for the proposed LHV. Given a query image, its local features are first extracted and embedded into hash codes via UBLH. Then, each
hash code (e.g., “1100101001”) corresponding to a local feature in the query image is then searched in the Hamming lookup table within the Hamming
radius r and the corresponding images’ indices are obtained. Finally, we vote and accumulate the times of each image’s indices appearing in relevant buckets
and rank them to return the retrieved results.

Therefore, for t = 0, we randomly initialize �
(t)
2 ; for the

tth step, we have the update rules

�
(t)
1 ← the first d1 eigenvectors of M2

(
�

(t−1)
2

)

�
(t)
2 ← the first d2 eigenvectors of M1

(
�

(t)
1

)
.

For the tth step (t ≥ 1), we have the following inequality:

L
(
�

(t−1)
1 ,�

(t−1)
2

)
≤ L

(
�

(t)
1 ,�

(t−1)
2

)
≤ L

(
�

(t)
1 ,�

(t)
2

)
.

Thus L(�
(t)
1 ,�

(t)
2 ) is monotonically nondecreasing as t→∞.

And continuous function L(�1,�2) is bounded in the
closed district {(�1,�2)|�T

1 �1 = I,�T
2 �2 = I}. Then

the above alternate iteration converges. In practice, we
stop the iteration when the difference |L(�

(t)
1 ,�

(t)
2 ) −

L(�
(t−1)
1 ,�

(t−1)
2 )| is less than a small threshold or the num-

ber of iteration reaches a maximum. We summarize UBLH in
Algorithm 1.

IV. INDEXING VIA LOCAL HASHING VOTING

Once the bilinear projection matrices {�1,�2} are obtained,
we can easily embed the training data into binary hash codes
by (1). And for a query local feature x̂, its hash code is
obtained by

H
(
X̂
) = sgn

⎛

⎝vec

⎛

⎝�T
1

⎛

⎝X̂ − 1

N

∑

j=1

Xj

⎞

⎠�2

⎞

⎠

⎞

⎠ (17)

with the input of centralized data, where X̂ is the matrix form
of x̂. For an upcoming query, a common way to find the sim-
ilar samples in the training set by using Hamming distance
ranking. However, for our local feature hashing scenario, tra-
ditional linear search (e.g., Hamming distance ranking) with
complexity O(N) is not fast any more, since N denotes the
total number (at least 3M for a large-scale database)1 of local
features. To accomplish the local feature-based visual retrieval,
in this paper, we introduce a fast indexing scheme via LHV
as shown in Fig. 3. We first build the Hamming lookup table

1For large-scale database retrieval, the total number of local features is
always very huge. In practice, for a 10K images training set, if each image
contains 300 local feature, N would be 300× 10K = 3M.

Algorithm 2 Local Hashing Voting
Input: The local feature set F of training images, the local

feature set of query image Q = {q1, . . . , qm}, where
qi ∈ R

D, ∀i, Hamming radius r and the learned bilinear
projection matrices {�1,�2}.

Output: The retrieved images ranked by similarity.
1: Transform all the local features in F and Q into matrix

form;
2: Embed all the local features into Hamming space via

Eq. (1) with {�1,�2};
3: Construct Hamming lookup table over the training set;
4: for i = 1 to m do
5: For the query hash code H(vec−1(qi)), store all the pos-

sible image indices falling into the Hamming lookup
table within Hamming radius r;

6: end for
7: Vote and accumulate the times of each image’s indices

appearing and rank them in decreasing order;
8: return All the relevant images as the retrieved results.

(also known as the hashing table) into our LHV scheme. Given
a query, we can find the bucket of corresponding hash codes in
near constant time O(1), and return all the data in the bucket
as the retrieval results.

After construction of the Hamming lookup table over the
training set, we store the corresponding indices for the hash
codes of all local features. For instance, given a bucket with
hash code “1100101001,” we store the indices of the images,
which contain the same local feature hash code with this
bucket. In this way, we search the hash code H(vec−1(qi))

for each local feature qk ∈ Q in the query image Q =
{q1, . . . , qm} over the Hamming lookup table within Hamming
radius r and return the possible images’ indices. It is note-
worthy that the same bucket in the Hamming lookup table
may store the indices from different images. Finally, we vote
and accumulate the times of each image’s indices appear-
ing in relevant buckets and then rank them in decreasing
order. The final retrieved samples are returned according to
the relevant ranking generated by LHV, which is depicted in
Algorithm 2.
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V. COMPLEXITY ANALYSIS

The time complexity of UBLH mainly contains three parts.
The first part is computing the F2F weight wF

ij , which costs
O(|P|D+NKTD) time, where T is the number of iterations in
the K-means. The second part is constructing the I2I similarity
wI

ij. Using the reduction strategy in NN-search, the average
time complexity of this part is O(NK1+δD). The last part is
the eigen decomposition for the bilinear projection matrices
via alternate optimization. The updates of �1 and �2 have
the time complexity of O(D3

1) and O(D3
2), respectively. The

test phase is image indexing via the LHV. For the hash code
of each local feature, the index complexity is O(1) using the
Hamming lookup table. Thus, it only needs O(m) time for a
query with m local features in the search phase. In total, if we
select local feature pairs less densely such that |P| ∼ O(N)

and set δ = 0.5 for the reduction of complexity, the time
complexity of UBLH is at most O(ND+NKTD+NK1.5D)+
(O(D3

1)+ O(D3
2))NT + O(m), where NT is the number of the

iteration for alternate optimization. In the experiments, NT is
always less than 10.

VI. EXPERIMENTS

In this section, the proposed UBLH algorithm is evalu-
ated for the image similarity search problem. Three realistic
image data sets are used in our experiments: Caltech-256 [44],
SUN397 [45], and Flickr 1M.2 The Caltech-256 data set con-
sists of 30 607 images associated with 256 object categories.
We further randomly choose 1000 images as the query set and
the rest of data set is regarded as the training set. The SUN397
data set contains 108 754 scene images in total from 397 well-
sampled categories with at least 100 images per category.
Seventy samples are randomly selected from each category
to construct the training set and the rest of samples are the
query set. Thus, there are total numbers of 27 790 and 80 964
in the training set and query set, respectively. For the Flickr
1M data set, it contains one million Web images collected
from the Flickr. We take 1K images as the queries by ran-
dom selection and use the remaining to form the gallery
database. Considering the huge cost of computation, in this
experiment, only 150 000 randomly selected samples from the
gallery database form the training set. Furthermore, for image
searching tasks, given an image, we would like to describe it
with a set of local features extracted from it. In our experi-
ments, we extract 128-D SIFT as the local feature to describe
the images and then learn to hash these local descriptors with
all compared methods. Particularly, considering the computa-
tional cost, we limit the maximum number of local features
extracted from one image with 700.

In the querying phase, using LHV as the retrieval tool, a
returned point is regarded as a neighbor if it lies in the top
ranked 200, 200, and 1000 points for Caltech-256, SUN397,
and Flickr 1M, respectively. Specifically in LHV, we only con-
sider the local hash codes lying in the buckets that fall within a
small Hamming radius r = 2 (following [25]) in the Hamming
lookup table which is constructed using the training codes.

2http://www.multimedia-computing.de/wiki/Flickr1M

We evaluate the retrieval results in terms of the mean average
precision (MAP) and the precision-recall curve by changing
the number of top ranked points in LHV. Additionally, we also
report the training time and the test time (the average searching
time used for each query) for all methods. Our experiments
are completed using MATLAB 2013a on a server configured
with a 12-core processor and 128 GB of RAM running the
Linux OS.

A. Compared Methods and Settings

Since our UBLH is the work of unsupervised linear hashing
for local features, for fair comparison, the other hashing tech-
niques originally proposed for global features are also directly
applied to local features. In our experiments, we first compare
the proposed method against twelve prevailing hashing algo-
rithms, including four supervised methods: 1) LDAH [29];
2) BRE [30]; 3) MLH [31]; and 4) KSH [32], and eight unsu-
pervised methods: 1) LSH [21]; 2) WTA [46]; 3) PCAH [24];
4) SpH [25]; 5) AGH [26]; 6) CH [28]; 7) ITQ [47]; and
8) spherical hashing (SpherH) [48]. Besides, HE [38], which
is a nonlinear local feature-based hashing method, is also
included in our comparison. We use the publicly available
codes of BRE, MLH, LDAH, SpH, AGH, ITQ, and SpherH,
and implement LSH, PCAH, KSH, CH, HE, and WTA our-
selves. All of the above methods are then evaluated on six
different lengths of codes (16, 32, 48, 64, 80, and 96). Under
the same experimental setting, all the parameters used in the
compared methods have been strictly chosen according to their
original papers.

For our UBLH, to obtain the weak label information, the
parameter K of the K-means in the proposed method for each
data set is selected from one of {300, 400, . . . , 1200} with
the step of 100 by 10-fold cross-validation on the training
sets. The parameter δ is always fixed to 0.5. Besides, we set
D1 = 16 and D2 = 8 for the transformation of 128-D SIFT
local features (see Section III). Additionally, the optimal bal-
ance parameter λ is chosen from one of {0.05, 0.1, . . . , 0.5}
with the step of 0.05 via the training sets, as well.

B. Results and Analysis

We demonstrate MAP curves on the Caltech-256, SUN397,
and Flickr 1M data sets compared with different methods in
Fig. 4. All the results are calculated via the proposed LHV
ranking algorithm under the same setting. From the general
tendency, accuracies on the SUN397 data set are lower than
those on the other two data sets, since more categories and
large intraclass variations exist in SUN397. Our UBLH algo-
rithm consistently outperforms all the compared methods in
every length of code. Especially on the Caltech256 data set,
the improvement is near 5% between UBLH and the top super-
vised method KSH on each code length. Beyond that, we can
observe that due to the available label information in the learn-
ing phases, the supervised methods, such as KSH, BRE, and
MLH, always achieve better performance than the compared
unsupervised methods on all three data sets. Interestingly, the
results of LDAH always climb up then go down when the
length of code increases. The same tendency also appears with

http://www.multimedia-computing.de/wiki/Flickr1M
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(a) (b) (c)

Fig. 4. Performance comparison (MAP) of UBLH and other hashing schemes with different code lengths. (a) Caltech-256. (b) SUN397. (c) Flickr 1M.

(a) (b) (c)

Fig. 5. Performance comparison (MAP) of UBLH with the global representation-based hashing methods and HE. (a) Caltech-256. (b) SUN397. (c) Flickr 1M.

(a) (b) (c)

Fig. 6. Precision-recall curves of all compared algorithms on the three data sets with the code length of 96 bits. (a) Caltech-256. (b) SUN397. (c) Flickr 1M.

BRE, KSH, and PCAH. The two unsupervised hashing meth-
ods, ITQ and SpherH, generally outperform other compared
unsupervised methods, while achieve worse accuracies than
the supervised methods. Our UBLH achieves dramatically bet-
ter performance than all other unsupervised methods and also
reaches higher accuracies compared with the supervised ones
over three data sets. This is because we consider the geometry
structure of local features and the global relationship between
images simultaneously. Besides, in Table II we also illustrate
the results computed via LFBC under different local feature
decomposition. Since SIFT feature is intrinsically composed
via 16 grid with 8-bin histograms, the best naturally bilinear
decomposition, i.e., 8× 16 = 128 dim, can achieve the better
results than other decomposition ways.

To make the comparison more convincing, some hashing
schemes based on global representations are also included
in our comparison. For all three data sets, we first use the
K-means scheme to construct the codebooks with size of
500 and 1000, respectively, and then encode SIFT features
into global representations via VLAD [49], which are proved
to be more discriminative than original BoW representations.
After that, two best performed hashing methods, i.e., KSH and
BRE, are used to learn the hash codes on these global repre-
sentations. Additionally, we also list the search performance
via directly using the global feature GIST with KSH and BRE.
In Fig. 5, it shows that our local hashing method UBLH with
LHV achieves better results than the global representation-
based hashing schemes with the ordinary hash table (r = 2)
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Fig. 7. Performance comparison (MAP) on the three data sets at 32-bit. UBLH(F2F) and UBLH(I2I) represent the proposed method only using the F2F
term or the I2I term, respectively.

TABLE I
MAP AT 32-BIT, TRAINING TIME AND TEST TIME (WITH LHV) OF DIFFERENT HASHING METHODS ON THREE DATA SETS

Fig. 8. Illustration of convergence on Caltech-256 with the code length 32.
(a) Objective function value versus number of iteration. (b) Differences of
�1 and �2 versus number of iteration.

for retrieval. Moreover, precision-recall curves of all the com-
pared methods on these data sets with the code length of
96 bits are presented in Fig. 6 as well. From all these fig-
ures, we can further discover that, for all three data sets,
UBLH achieves significantly better performance than other
unsupervised methods and still slightly outperforms super-
vised ones by comparing the MAP and area under the curve.
Fig. 8 illustrates the convergence of the proposed ULBH on
Caltech-256 with the code length of 32. We can clearly observe

TABLE II
RESULT COMPARISON (32 BITS) VIA LFBC FROM DIFFERENT

DECOMPOSITIONS OF SIFT FEATURES

that the objective function value is stable when the number
of iteration is larger than 3. Besides, it is easy to show that
with the increase in the number of iteration, the differences
of �1 and �2, i.e., ‖�(t)

1 − �
(t−1)
1 ‖ and ‖�(t)

2 − �
(t−1)
2 ‖,

where t is the number of iteration, dramatically drop down.
Additionally, in Fig. 9, we also compare the performance of
UBLH with respect to the parameter K in the K-means and
balance parameter λ via cross-validation on the training sets.

In addition, to illustrate the effectiveness of F2F and I2I
terms in our method, we compare the algorithm only using the
F2F term or the I2I term in Fig. 7. The results indicate that
preserving the I2I similarity is more effective than preserving
the similarity between features. Meanwhile, combining them
together could always gain better performance.
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Fig. 9. Parameter sensitivity analysis (K and λ) with 32 bits on
training sets. The dashed lines show the best performance for each
K ∈ {300, 400, . . . , 1200} and λ ∈ {0.05, 0.1, . . . , 0.5}, respectively, when
other parameters are varied.

Finally, the training time and test time for different algo-
rithms on three data sets are also illustrated in Table I.
Considering the training time, supervised methods always need
more time for the hash learning except for LDAH. In particu-
lar, BRE and MLH spend the most time to train hash functions.
The random projection-based algorithms are relatively more
efficient, especially the LSH. Our UBLH costs significantly
less time than KSH, BRE, MLH, and CH but more than other
methods for training. In terms of the test phase, LSH, LDAH,
and PCAH are the most efficient methods due to the simple
matrix multiplication or thresholding in binary code learning,
while AGH has the comparable searching time with SpH. Our
UBLH costs similar time as WTA. More details can be seen
in Table I.

VII. SCALABILITY FOR VERY LARGE DATA SETS

For more realistic retrieval on very large-scale data sets
(e.g., the Google database), the proposed approach would
become time-consuming for training due to a huge number of
local features generated and involved in our computation. To
avoid the heavy burden of computation and make our method
practical in such cases, we can use anchor point quantization
(APQ) to reduce the computational complexity of our UBLH.
Inspired by [50], we can first extract the anchor points from
all local features via clustering techniques (e.g., K-means) as

we have stated in our algorithm. Then, each local feature in
the training set can be quantized to one anchor point. In this
way, we replace all local features with their corresponding
anchor points in the training phase. In particular, F2F preserv-
ing can be effectively transferred to anchor point to anchor
point preserving. Similarly, we can also use anchor points for
I2I preserving. Thus, APQ can be applied on very large-scale
data collections to enable more efficient training than directly
using a huge number of original local features.

VIII. CONCLUSION

In this paper, we have presented a novel unsupervised hash-
ing framework, namely UBLH, to learn highly discriminative
binary codes on local feature descriptors for large-scale image
similarity search. The bilinear property of UBLH lets it explore
the matrix representation of local features. Considering the
pairwise and source information of local features, as a result,
the F2F and I2I structures have been simultaneously pre-
served in UBLH. We have systematically evaluated our method
on the Caltech-256, SUN397, and Flickr 1M data sets and
shown promising results compared to state-of-the-art hashing
methods.
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