Legerlotz, Kirsten, Riley, Graham P. ORCID: https://orcid.org/0000-0001-5528-5611 and Screen, Hazel R. C. (2010) Specimen dimensions influence the measurement of material properties in tendon fascicles. Journal of Biomechanics, 43 (12). pp. 2274-2280. ISSN 1873-2380
Preview |
PDF (Legerlotz_et_al_J_Biomechanics_2010_43_2274–2280.pdf)
- Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (749kB) | Preview |
Abstract
Stress, strain and modulus are regularly used to characterize material properties of tissue samples. However, when comparing results from different studies it is evident the reported material properties, particularly failure strains, vary hugely. The aim of our study was to characterize how and why specimen length and cross-sectional area (CSA) appear to influence failure stress, strain and modulus in fascicles from two functionally different tendons. Fascicles were dissected from five rat tails and five bovine foot extensors, their diameters determined by a laser micrometer, and loaded to failure at a range of grip-to-grip lengths. Strain to failure significantly decreased with increasing in specimen length in both rat and bovine fascicles, while modulus increased. Specimen length did not influence failure stress in rat tail fascicles, although in bovine fascicles it was significantly lower in the longer 40 mm specimens compared to 5 and 10 mm specimens. The variations in failure strain and modulus with sample length could be predominantly explained by end-effects. However, it was also evident that strain fields along the sample length were highly variable and notably larger towards the ends of the sample than the mid-section even at distances in excess of 5 mm from the gripping points. Failure strain, stress and modulus correlated significantly with CSA at certain specimen lengths. Our findings have implications for the mechanical testing of tendon tissue: while it is not always possible to control for fascicle length and/or CSA, these parameters have to be taken into account when comparing samples of different dimensions.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Science > School of Biological Sciences |
UEA Research Groups: | Faculty of Medicine and Health Sciences > Research Groups > Musculoskeletal Medicine Faculty of Science > Research Groups > Cells and Tissues |
Depositing User: | Users 2731 not found. |
Date Deposited: | 17 May 2011 13:05 |
Last Modified: | 02 Sep 2023 00:20 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/30664 |
DOI: | 10.1016/j.jbiomech.2010.04.040 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |