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Stress, strain and modulus are regularly used to characterize material properties of tissue samples.

However, when comparing results from different studies it is evident the reported material properties,
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particularly failure strains, vary hugely. The aim of our study was to characterize how and why

specimen length and cross-sectional area (CSA) appear to influence failure stress, strain and modulus in

fascicles from two functionally different tendons. Fascicles were dissected from five rat tails and five

bovine foot extensors, their diameters determined by a laser micrometer, and loaded to failure at a

range of grip-to-grip lengths. Strain to failure significantly decreased with increasing in specimen

length in both rat and bovine fascicles, while modulus increased. Specimen length did not influence

failure stress in rat tail fascicles, although in bovine fascicles it was significantly lower in the longer

40 mm specimens compared to 5 and 10 mm specimens. The variations in failure strain and modulus

with sample length could be predominantly explained by end-effects. However, it was also evident that

strain fields along the sample length were highly variable and notably larger towards the ends of the

sample than the mid-section even at distances in excess of 5 mm from the gripping points. Failure

strain, stress and modulus correlated significantly with CSA at certain specimen lengths. Our findings

have implications for the mechanical testing of tendon tissue: while it is not always possible to control

for fascicle length and/or CSA, these parameters have to be taken into account when comparing samples

of different dimensions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical testing is frequently used to characterize tendons,
and to describe the effects of interventions such as exercise or
medication on their mechanical properties. Force, deformation
and stiffness, derived from an ultimate tensile strength test,
provide sample specific information about the mechanical
behaviour of a tendon sample. From these values, stress, strain
and elastic modulus are regularly derived in order to provide
quantitative data concerning material properties, with the
intention of characterizing the material irrespective of sample
dimensions. However, when comparing the results of different
studies, it is evident that the reported material properties, in
particular the strain values, vary hugely, e.g. from 6–10% (Rigby
et al., 1959; Tamiwa, 2007) to 17–20% (Almeida-Silveira et al.,
2000; Legerlotz et al., 2007) in rat tendons.

It is well documented that the mechanical properties of
tendons are influenced by a range of intrinsic and extrinsic
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factors including anatomical site (Haraldsson et al., 2005), age
(Nakagawa et al., 1996), loading history (Simonsen et al., 1995) or
hormonal status (Inhofe et al., 1995). In addition, results can also
be influenced by experimental setup, including environmental
conditions and test protocol (Schatzmann et al., 1998; Wang et al.,
1991). However, even taking these factors into account, there is a
remarkably wide range of reported material properties for tendon,
with particularly large strain values frequently reported when
analyzing the tendons of small mammals such as rats.

A recent study by Tamiwa et al. (2006) suggested that stress is
not able to accurately normalize force data for rat tail tendon
fascicles, whilst two brief articles published in the 1980s describe
an effect of specimen length on stress–strain characteristics in rat
tail tendon (Haut, 1986; Sanjeevi et al., 1982). A number of
reasons for these variations have been hypothesized, including
inhomogeneity of samples (Atkinson et al., 1999) and end-effects
(Lam et al., 1988). The influence of each of these effects is
important, as it highlights the difficulties in simply using stress
and strain parameters to derive true material properties for non-
homogenous soft tissues.

The aims of our study were to highlight the influence of
specimen length and CSA on apparent material properties,
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investigate why these occur, and determine if they differ between
two functionally different tendons. We hypothesize that the
variations recorded in material properties with specimen dimen-
sions are largely influenced by gripping the specimens. However,
we further suggest that variations in micro-structure between
different sized samples may lead to different material properties.
Fig. 1. Representative samples of bovine extensor and rat tail fascicles tested at

20 mm specimen length. The stress–strain curve shows a different slope for rat tail

(broken line) and bovine extensor fascicles (continuous line) (A). The failure stress

(maximum stress) is marked by a triangle. Failure strain is defined as the strain at

the point of maximum stress. The begin and end of the defined linear region, in

which the elastic modulus was calculated, are marked by two dots. The continuous

elastic modulus shows a characteristic two-peak course in rat tail fascicle in

contrast to a one peak course in bovine extensor fascicles (B).
2. Methods

Tendon fascicles were dissected according to an established protocol (Screen, 2003)

from five rat tails and five bovine foot extensors, all from healthy animals sacrificed for

other, unrelated reasons. For each fascicle, the diameter was determined by a laser

micrometer at multiple points along a 1 cm region in the middle of the fascicle. The

smallest diameter recorded was used to calculate CSA, assuming a circular shape.

Fascicles were secured in a materials testing machine (Bionix100, MTS, 50N Load cell)

by pneumatically driven grips with a serrated surface, exerting a gripping pressure of

3 GPa. Fascicles were loaded to failure at room temperature at a strain rate of 1%/s.

During dissection and testing, specimens were kept moist by continually spraying with

phosphate buffered saline solution (PBS, Sigma).

Grip-to-grip length was varied and at each length 3–4 fascicles per animal

were tested: rat tail fascicles were tested at 5, 10, 20, 40, 60, 80 and 100 mm (103

fascicles in total); bovine extensor fascicles were tested at 5, 10, 20 and 40 mm (67

fascicles in total). Force and deformation were both continuously recorded from

the Bionix100 at 50 Hz and engineering stress and strain calculated using the CSA

and length of the sample at the start. From the resulting data, the point at which a

0.1 N load was detected was located, and defined as the test start point. The

original sample length was corrected accordingly. Stress–strain data were

smoothed with a 5-point moving average filter, before calculating the modulus

over every 8 values. The modulus across the most linear region of the stress–strain

curve and the maximum modulus were found (Fig. 1) and referred to as the linear

and maximum modulus, respectively.

The end-effect was calculated to establish the effective specimen length,

which is longer than the daylight length. Compliance (elongation/linear mod-

ulus�CSA) against specimen length was plotted, and the regression line

extrapolated to cut the x-axis and indicate the magnitude of the end-effect (Ker,

1981). Material properties were then corrected for end-effects, to determine how

they influence the measured data.

To determine the strain distribution along the length of the fascicles, markers (ink)

were drawn every 5 mm along bovine extensor fascicles of 20 and 40 mm lengths. The

quasi-static tests to failure were filmed (Olympus C-740, 15 Hz) and the strain

distribution determined at the beginning of the test, 50% of strain to failure, and in the

last few frames prior to failure. Strains were measured in specific sections of the sample

for comparison. The grip-section was defined as the distance of the second highest

marker to the upper grip and the second lowest marker to the lower grip, resulting in a

constant grip-section length of 15 mm for both the 20 and 40 mm long samples. The

remaining distance was defined as the mid-section, which was 5 mm long in the

20 mm sample and 25 mm long in the 40 mm sample. Distances between the markers

and the grips were measured using an image processing program (ImageJ, National

Institutes of Health, USA) and local strains in each section were determined and

expressed as a contribution to total sample strain.

2.1. Statistical analyses

A one-way-ANOVA (Post-Hoc test: Tukey) was used to determine the effect of

specimen length on mechanical parameters. To describe relationships between

mechanical parameters and either CSA or specimen length, Pearsons correlation

coefficient was used. Bovine extensor and rat tail fascicles at a specific specimen

length were compared by an unpaired t-test, as were mid-section and grip-section

strains in short and long samples. Mid-section and grip-section strains within a

group of samples of the same length were compared by a paired t-test. The

Kolmogorov–Smirnov test did not show any deviation from the normal distribu-

tion for any variable. For all statistical tests, significance was established at

pr0.05. Data are presented as mean7SD.
3. Results

Gripping samples during mechanical testing will always lead to
stress concentrations at the grips, hence the reported failure proper-
ties should be considered a minumum. However, using identical
testing methods for all specimens, the values can be compared.
Failure stress, strain and modulus, derived directly from the Bionix100
force and extension data, are compared for different sample lengths
or diameters in Figs. 2 and 3, respectively.
3.1. Specimen length

Strain to failure was significantly influenced by specimen
length and consistently reduced as the sample length increased.
By contrast, specimen length did not influence failure stress in rat
tail fascicles, although in bovine fascicles, it was significantly
lower in 40 mm than 5 or 10 mm long specimens. The linear
modulus increased with increasing specimen length in both
sample types. Whilst the effect of specimen length on mechanical
parameters was similar in rat tail and bovine extensor fascicles,
failure strains were consistently significantly lower in rat tail than
bovine extensor fascicles, resulting in a significantly higher linear
modulus in rat tail fascicles (Fig. 2). Strain measurements at
longer specimen lengths were very consistent as evident from the
particularly small standard deviations.
3.2. Cross-sectional area

Failure strain, stress and linear modulus all correlated
significantly with CSA at certain specimen lengths. In bovine
extensor fascicles, correlations were only apparent in short



Fig. 2. Strain at failure (A), stress at failure (B) and elastic modulus (C) at different

specimen length in rat tail (open circles) and bovine extensor (filled circles)

fascicles. n indicates a significant difference between rat tail and bovine extensor

fascicles at a specific specimen length (pr0.05). Failure strain (A): rat

tail¼significantly higher strains at 5, 10 and 20 mm compared to 60, 80 and

100 mm lengths, and 5 and 10 mm lenghts compared to 40 mm lengths; bovine

extensors¼statistically significant reduction in failure strain with every increase

in sample length. Stress (B): bovine extensor¼ lower in the 40 mm compared to 5

and 10 mm long specimens. Linear modulus (C): rat tail¼significant differences

between 5 mm long fascicles and those 20–100 mm long, as well as 10 mm long

samples and those 60 and 80 mm long; bovine extensor fascicles¼5 mm long

samples experienced a lower modulus than 10–40 mm long samples.
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specimen lengths (5 and 10 mm lengths), where CSA positively
correlated with strain and negatively correlated with stress and
linear modulus. In rat tail fascicles, failure strain correlated
positively with CSA at specimen lengths of 5 and 20 mm, whilst
stress and linear modulus correlated negatively with CSA at the
majority of sample lengths (10–60 and 100 mm and 5–60 and
100 mm, respectively) (Fig. 3, Table 1).
3.3. End-effect

The linear regression lines, indicating that compliance is
proportional to length, crossed the x-axis at �5.86 mm (bovine
extensor) and �7.50 mm (rat tail) (Fig. 4A). The end-effect at each
grip can thus be estimated at 2.93 mm in bovine extensor and
3.75 mm in rat tail samples. These data highlight that, having
accounted for end-effects, a single linear modulus value can be
used to describe each tendon type, found from the reciprocal of
the regression lines to be 10007165 MPa for rat rail tendons and
7147120 MPa for bovine extensors. Correcting failure strains for
end-effects reduced differences between short and long sample
lengths; however, significant reductions in failure strain with
increase in sample length were still evident (Fig. 4B).
3.4. Shape of the stress–strain curve

The shape of the stress–strain curves was consistently
different for bovine extensor and rat tail fascicles, and in the case
of the rat tail fascicles it also changed with specimen length. The
continuous modulus curves showed a characteristic two-peak
course in rat tail fascicles in contrast to one peak in bovine
extensor fascicles (Fig. 1B). In rat tail fascicles, the height of the
first peak, rising to the maximum modulus, increased with
increasing specimen length (r¼0.592; po0.01), enlarging the
difference between the maximum and linear modulus. By
contrast, this difference remained constant in bovine extensor
fascicles (r¼0.107; p¼0.387) (Fig. 5A). The location of the
maximum modulus on the stress–strain curve, relative to the
strain at failure, appeared to be constant and independent of
specimen length in both types of tendon fascicles. However, it
occurred significantly earlier in rat tail fascicles at 2177% of the
strain at failure compared to 36713% of failure strain in bovine
extensor fascicles (Fig. 5B).
3.5. Mid-section and grip-section strain

Whilst deformation (Fig. 6F) and subsequently local strains
(Fig. 6D) in the grip-section were consistent for both sample
lengths, mid-section strains were significantly smaller in larger
specimens, highlighting that the variable strain distribution
extended well beyond the gripping regions (Fig. 6E). Whilst
similar trends were unsurprisingly seen at 50% of failure, local
strains in the mid-section of short samples were significantly
smaller than in the grip-section at this time point only (Fig. 6A),
highlighting that strains did not increase homogenously
throughout the test either, but increased more rapidly in the
grip-section for both sample lengths (Fig. 6B and E).
4. Discussion

We have highlighted how the material properties of tendon
fascicles appear to be influenced by both specimen length and
CSA. Measurement of grip-to-grip failure strains yielded signifi-
cantly larger values in shorter specimens, with a subsequent
reduction in modulus in these samples, while Fig. 3 also
highlighted how failure stress and modulus both decreased with
Increasing sample diameter. Increased total strains at short
specimen lengths have been described previously (Haut, 1986).
Further studies have suggested that this might be due to the end-
effect, where extra unseen sample length within the grips
contributes heavily to overall strain measurements in short
specimens, whereas the response of longer samples more closely
reflects true material properties (Bennett et al., 1986; Lam et al.,
1988). A correction for end-effects in the current data notably
reduced the magnitude of differences in strain between short and
long samples, and also enabled us to find a single modulus value
for each tendon type, indicating that the apparent changes in
sample properties with length are likely to be almost entirely
artifactual. One method to avoid this is to use an extensometer,
which provides a method of measuring sample length without
including the grip -region, and thus eliminating end-effect
artifacts.



Fig. 3. Relationship between cross-sectional area and strain, stress and elastic modulus in rat tail (A, C, E) and bovine extensor fascicles (B, D, F) at 5, 10, 20 and 40 mm grip-

to-grip length.
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Returning to the uncorrected data, Fig. 3 indicates that
material properties are also influenced by CSA. While this is at
odds with Fig. 4, in which a single modulus value was
appropriately found for each tendon type, it may explain the
large standard deviations for each sample length in this data, if
modulus is additionally influenced by CSA. A correlation between
CSA and failure stress cannot be directly related to end-effects. It
is possible that some of the variation is still related to gripping, as
collagen fibers in the centre of a larger fascicle experience less
gripping pressure and are therefore more likely to shear and add
to the end-effect, thereby increasing strain. However, in rat tail
specimens of 10, 40, 60 and 100 mm length, no correlation
between CSA and strain was observed, but CSA did correlate with
stress and modulus.

The smaller stress values of larger diameter samples may also
be related to structural differences in the internal organization of
samples. This may encompass fiber organization, interactions
between subfascicles connected by connective tissue sheaths, or
the relative contribution of collagen fascicles and connective
tissue sheaths. It has been suggested that the decrease in the
amount of areolar connective tissue in smaller samples might lead
to an increase in modulus (Danylchuk et al., 1978). Alternatively,
the proportion of fiber bundles running parallel to the axis of force
might be larger in smaller specimens (Butler et al., 1986). Indeed,
on a macro-scale, a study of human patella tendon has shown that
small (�1 mm2) and large (�20 mm2) sections of tendon do not
exhibit the same mechanical properties with larger modulus
values in small specimens (Atkinson et al., 1999). This has been
attributed to structures other than the subfascicle, such as the
epitenon or other connective tissue components. Average fascicle
CSA has been shown to be negatively correlated with tendon
modulus, but positively correlated to the total tendon CSA in



Fig. 4. Calculation of and correction for the end-effect: (A) compliance against

specimen length. The point where the regression line crosses the x-axis gives an

indication of the magnitude of the end-effect. (B) Strain corrected for end-effect:

bovine extensor¼significant reduction in failure strain with every increase in

sample length (except 5–10 mm); rat tail¼higher strains in 5–20 mm compared

to 80–100 mm samples and 5–10 mm compared to 60 mm samples. n indicates a

significant difference between rat tail and bovine extensor fascicles at a specific

specimen length (pr0.05).

Fig. 5. Relationship between specimen length and the relative difference between

the linear and the maximum elastic modulus (A) and location of the maximum

elastic modulus (B). In rat tail (open circles) the peak of the continuous elastic

modulus increases with longer specimen length, enlarging the difference between

the linear and maximum elastic modulus (r¼0.592; po0.001). In bovine extensor

(filled circles) the shape of the curve is not affected by specimen length. The

location of the maximum elastic modulus is independent of specimen length, but

dependent on tendon structure/function, occurring earlier in rat tail than in bovine

extensor fascicles. n indicates a significant difference between rat tail and bovine

extensor fascicles at a specific specimen length (pr0.05).

Table 1
Correlation (Pearson) of cross-sectional area with strain, stress and linear modulus

at different specimen length in bovine extensor and rat tail fascicles.

Length (mm) Correlation of CSA with

Strain Stress Modulus

Bovine extensor

5 0.681n
�0.647n

�0.744n

10 0.795n
�0.632n

�0.803n

20 0.260 �0.176 �0.325

40 �0.079 �0.260 �0.259

Rat tail

5 0.924n
�0.243 �0.914n

10 0.443 �0.700n
�0.770n

20 0.797n
�0.601n

�0.867n

40 0.018 �0.644n
�0.775n

60 0.095 �0.708n
�0.757n

80 0.493 �0.203 0.494

100 �0.108 �0.634n
�0.792n

n Indicates a significant correlation (pr0.05).
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equine superficial digital flexor tendon, also indicating an effect of
structural organization on mechanical properties (Gillis et al.,
1997).
Indeed, differences in composition and structure of function-
ally different tendons, such as the rat tail and bovine tendons
investigated in the current study, may explain many of the
differences seen in their mechanical properties. Although failure
strain, stress and modulus displayed similar trends with specimen
length in both tendons, the shape of the stress–strain curve at
different specimen lengths changed in rat tail fascicles only, and
the effect of CSA on mechanical properties was more pronounced
in rat tail fascicles.

Whilst end-effects explain the variation in failure strain with
sample length, Fig. 6 also highlights how local strains vary along
with sample length during testing. It has been reported previously
that the strains close to the gripping points are higher than in the
mid-section of specimens (Butler et al., 1984; Devkota and
Weinhold, 2003; Wu et al., 2004). This has been attributed to
sample slippage in the grips, or premature failure, resulting from



Fig. 6. Mid-section and grip-section strain for bovine extensor fascicles tested at 20 and 40 mm grip-to-grip distance. Data presented as local strain (A, D) proportion of

total strain (B, E), and deformation (C, F) at 50% of maximum (A–C) and at failure (D–F). Data were derived from image analysis of filmed tests. n indicates a significant

difference between specimens of different length (pr0.05). # indicates a significant difference between grip-section and mid-section strain within specimens of the same

length. The numbers above the columns illustrate the relationship between grip-section (first number) and mid-section strain (second number).
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local stress concentrations at the grips (Butler et al., 1984; Wu
et al., 2004). While gripping may reduce the sample diameter at
these points and lead to greater stress and more extension in
these regions, failure occurred throughout the length of the
samples, opposing the suggestion of localized damage near the
grips, although we cannot exclude grip-related damage triggering
the rupturing process. Furthermore, two studies investigating the
failure mechanics of tendons have found no reduction in the
ultimate tensile strength of tendons failing at the grips compared
with those failing in the mid-section (Ng et al., 2005; Smith et al.,
1996).

The act of gripping is likely to alter the stiffness of the ends of
the sample close to the grips. However, the small diameter of the
samples would suggest that this effect should only extend a
minimal distance into the sample. It does not readily explain a
strain distribution along the sample length, evidently extending
in excess of 5 mm from the gripping points. Considering these
findings from a micro-structural perspective, they may indicate
discontinuity of fibrils. The applied strain is evidently transferred
to those fibrils held within the grips, but our data imply that it
may not be fully transferred to the adjacent fibrils near the centre
of the sample, resulting in reduced strains in this area. Since the
grip-section in our experiment was between 5 and 10 mm long at
each end (in sum constantly 15 mm), and the mid-section strains
were notably higher in the short samples (20 mm) than in the
long samples, we conclude that this subunit is on average more
than 5 mm and less than 20 mm long.

While tendon fascicles are thought to span the entire length of
a tendon (Basso et al., 2001) and to be mechanically and
functionally independent (Haraldsson et al., 2008), controversy
exists regarding the length and continuity of collagen fibrils in
skeletally mature tendons and ligaments (Provenzano and
Vanderby, 2006). Fibrils are clearly discontinuous during tendon
development (Birk et al., 1997; Provenzano and Vanderby, 2006)
and the variable CSA along the length of some tendons, such as
the human Achilles tendon (Kongsgaard et al., 2005), suggests
that discontinuous subunits are necessary to allow for this change
in CSA. However, in mature tendon only two fibril ends have been
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spotted using transmission electron microscopy to analyze 5639
fibrils (Trotter and Wolfsky, 1989), and no ends have been found
in a study analyzing 7275 fibrils (Provenzano and Vanderby,
2006). The extremely high aspect ratio and interweaving of
collagen fibrils make imaging complex (Craig et al., 1989), and
with a fibril length in excess of 5 mm, the likelihood of seeing an
end is low. Since the large aspect ratio of collagen fibrils
complicates the experimental assessment of fibril length, theore-
tical approaches have also been used, estimating a mean collagen
fibril length in mature rat tail tendon of 6.4–12.7 mm (Craig et al.,
1989). This corresponds positively with our estimation of 45 and
o20 mm length of a discontinuous subunit.

4.1. Conclusion

Our findings have implications for the mechanical testing of
tendon tissue: while it is not always possible to control for fascicle
length and/or CSA, these parameters have to be taken into account
when comparing samples of different dimensions. It seems
advisable to use longer specimens whenever possible to reduce
the variability within a given subgroup of a defined fascicle
length, and to avoid end-effects by using an extensometer in a
portion of the specimen well clear of the clamps.
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