Myristoylated alanine-rich C kinase substrate coordinates native TRPC1 channel activation by phosphatidylinositol 4,5-bisphosphate and protein kinase C in vascular smooth muscle

Shi, Jian, Birnbaumer, Lutz, Large, William A. and Albert, Anthony P. ORCID: https://orcid.org/0000-0002-3596-9634 (2013) Myristoylated alanine-rich C kinase substrate coordinates native TRPC1 channel activation by phosphatidylinositol 4,5-bisphosphate and protein kinase C in vascular smooth muscle. FASEB Journal, 28 (1). pp. 244-255. ISSN 0892-6638

Full text not available from this repository. (Request a copy)

Abstract

Canonical transient receptor potential 1 (TRPC1) Ca2+-permeable cation channels contribute to vascular tone and blood vessel remodeling and represent potential therapeutic targets for cardiovascular disease. Protein kinase C (PKC) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] are obligatory for native TRPC1 channel activation in vascular smooth muscle cells (VSMCs) but how PKC and PI(4,5)P2 act together to induce channel gating remains unresolved. The present study reveals that myristoylated alaninerich C kinase substrate (MARCKS) protein coordinates activation of TRPC1 channels by PKC and PI(4,5)P2. TRPC1 channels and MARCKS form signaling complexes with PI(4,5)P2 bound to MARCKS; in this configuration TRPC1 channels are closed. Activators of TRPC1 channels induce PKC phosphorylation of TRPC1 proteins, which causes dissociation of TRPC1 subunits from MARCKS and release of PI(4,5)P2 from MARCKS; PI(4,5)P 2 subsequently binds to TRPC1 subunits to induce channel opening. Calmodulin acting at, or upstream of, MARCKS is also required for TRPC1 channel opening through a similar gating mechanism involving PKC and PI(4,5)P 2. These novel findings show that MARCKS coordinates native TRPC1 channel activation in VSMCs by acting as a reversible PI(4,5)P2 buffer, which is regulated by PKC-mediated TRPC1 phosphorylation. Moreover, our data provide evidence that PI(4,5)P2 is a gating ligand of TRPC1 channels.

Item Type: Article
Uncontrolled Keywords: calmodulin,transgenic,biotechnology,biochemistry,molecular biology,genetics,sdg 3 - good health and well-being ,/dk/atira/pure/subjectarea/asjc/1300/1305
Faculty \ School: Faculty of Medicine and Health Sciences > Norwich Medical School
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 29 Oct 2024 09:30
Last Modified: 12 Nov 2024 14:31
URI: https://ueaeprints.uea.ac.uk/id/eprint/97254
DOI: 10.1096/fj.13-238022

Actions (login required)

View Item View Item