Lawrence, Christopher C., Sobey, Wendy J., Field, Robert A. ORCID: https://orcid.org/0000-0001-8574-0275, Baldwin, Jack E. and Schofield, Christopher J. (1996) Purification and initial characterization of proline 4-hydroxylase from Streptomyces griseoviridus P8648: A 2-oxoacid, ferrous-dependent dioxygenase involved in etamycin biosynthesis. Biochemical Journal, 313 (1). pp. 185-191. ISSN 0264-6021
Full text not available from this repository. (Request a copy)Abstract
Proline 4-hydroxylase is a 2-oxoacid, ferrous-ion-dependent dioxygenase involved in the biosynthesis of the secondary metabolite etamycin. The purification, in low yield, of proline 4-hydroxylase from Streptomyces griseoviridis P8648 to near apparent homogeneity and its initial characterization are reported. In most respects proline 4-hydroxylase is a typical member of the 2-oxoacid-dependent dioxygenase family. It is monomeric (M(r) approx. 38000) (by gel filtration on Superdex-G75) and has typically strict requirements for ferrous ion and 2-oxoglutarate. The enzyme was inhibited by aromatic analogues of 2-oxoglutarate. L-Proline-uncoupled turnover of 2-oxoglutarate to succinate and CO2 was observed. The addition of L-ascorbate did not stimulate L-proline-coupled turnover of 2-oxoglutarate, but did stimulate L-proline-uncoupled turnover. L-Ascorbate caused a time-dependent inhibition of L-proline hydroxylation. The enzyme was completely inactivated by preincubation with diethyl pyrocarbonate under histidine-modifying conditions. This inactivation could be partially prevented by the inclusion of L-proline and 2-oxoglutarate in the preincubation mixture, suggesting the presence of histidine residue(s) at the active site.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | biochemistry,molecular biology,cell biology ,/dk/atira/pure/subjectarea/asjc/1300/1303 |
Faculty \ School: | Faculty of Science > School of Chemistry, Pharmacy and Pharmacology |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 11 Sep 2024 14:30 |
Last Modified: | 25 Sep 2024 18:09 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/96714 |
DOI: | 10.1042/bj3130185 |
Actions (login required)
View Item |