Ryder, David, Stone, David, Minardi, Diana, Riley, Ainsley, Avant, Justin, Cross, Lisa, Söffker, Marta ORCID: https://orcid.org/0000-0002-7131-5486, Davidson, Deborah, Newman, Andrew, Thomson, Peter, Darby, Chris and van Aerle, Ronny (2024) De novo assembly and annotation of the Patagonian toothfish (Dissostichus eleginoides) genome. BMC Genomics, 25. ISSN 1471-2164
Preview |
PDF (Ryder_etal_2024_BMCGenomics)
- Published Version
Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Background: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. Results: A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. Conclusions: We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.
Item Type: | Article |
---|---|
Additional Information: | Funding information: This work was funded by Argos Froyanes Ltd. |
Uncontrolled Keywords: | dissostichus eleginoides,illumina sequencing,pacbio sequencing,anti-freeze glycoprotein,nototheniidae,genetics,biotechnology ,/dk/atira/pure/subjectarea/asjc/1300/1311 |
Faculty \ School: | Faculty of Science > School of Environmental Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Collaborative Centre for Sustainable Use of the Seas |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 26 Jun 2024 15:38 |
Last Modified: | 25 Sep 2024 17:54 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/95697 |
DOI: | 10.1186/s12864-024-10141-4 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |