Genomic and physiological variability within Group II (non-proteolytic) Clostridium botulinum

Stringer, Sandra C., Carter, Andrew T., Webb, Martin D., Wachnicka, Ewelina, Crossman, Lisa C., Sebaihia, Mohammed and Peck, Michael W. (2013) Genomic and physiological variability within Group II (non-proteolytic) Clostridium botulinum. BMC Genomics, 14 (1). ISSN 1471-2164

Full text not available from this repository. (Request a copy)

Abstract

Background: Clostridium botulinum is a group of four physiologically and phylogenetically distinct bacteria that produce botulinum neurotoxin. While studies have characterised variability between strains of Group I (proteolytic) C. botulinum, the genetic and physiological variability and relationships between strains within Group II (non-proteolytic) C. botulinum are not well understood. In this study the genome of Group II strain C. botulinum Eklund 17B (NRP) was sequenced and used to construct a whole genome DNA microarray. This was used in a comparative genomic indexing study to compare the relatedness of 43 strains of Group II C. botulinum (14 type B, 24 type E and 5 type F). These results were compared with characteristics determined from physiological tests.Results: Whole genome indexing showed that strains of Group II C. botulinum isolated from a wide variety of environments over more than 75 years clustered together indicating the genetic background of Group II C. botulinum is stable. Further analysis showed that strains forming type B or type F toxin are closely related with only toxin cluster genes targets being unique to either type. Strains producing type E toxin formed a separate subset. Carbohydrate fermentation tests supported the observation that type B and F strains form a separate subset to type E strains. All the type F strains and most of type B strains produced acid from amylopectin, amylose and glycogen whereas type E strains did not. However, these two subsets did not differ strongly in minimum growth temperature or maximum NaCl concentration for growth. No relationship was found between tellurite resistance and toxin type despite all the tested type B and type F strains carrying tehB, while the sequence was absent or diverged in all type E strains.Conclusions: Although Group II C. botulinum form a tight genetic group, genomic and physiological analysis indicates there are two distinct subsets within this group. All type B strains and type F strains are in one subset and all type E strains in the other.

Item Type: Article
Additional Information: Funding Information: We are grateful to Miia Lindström, Charles Hatheway, Jenny Scott and John Crowther for providing strains of Group II C. botulinum. The authors gratefully acknowledge the support of the Biotechnology and Biological Sciences Research Council (BBSRC); this research was funded by the BBSRC Institute Strategic Programmes on Biology and Complexity of Foodborne Bacterial Pathogens (IFR/08/3) and Gut Health and Food Safety (BB/J004529/ 1), the Wellcome Trust and the Food Standards Agency.
Uncontrolled Keywords: biotechnology,genetics ,/dk/atira/pure/subjectarea/asjc/1300/1305
Faculty \ School: Faculty of Science > School of Biological Sciences
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 14 May 2024 09:33
Last Modified: 14 May 2024 09:33
URI: https://ueaeprints.uea.ac.uk/id/eprint/95144
DOI: 10.1186/1471-2164-14-333

Actions (login required)

View Item View Item