Hyder, Kieran ORCID: https://orcid.org/0000-0003-1428-5679, Åberg, Per, Johnson, Mark P. and Hawkins, Stephen J. (2001) Models of open populations with space-limited recruitment:Extension of theory and application to the barnacle Chthamalus montagui. Journal of Animal Ecology, 70 (5). pp. 853-863. ISSN 0021-8790
Full text not available from this repository. (Request a copy)Abstract
1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | intrinsic and extrinsic processes,marine,matrix,parameters,stability,ecology, evolution, behavior and systematics,animal science and zoology,sdg 14 - life below water ,/dk/atira/pure/subjectarea/asjc/1100/1105 |
Faculty \ School: | Faculty of Science > School of Environmental Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Collaborative Centre for Sustainable Use of the Seas |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 25 Nov 2023 03:24 |
Last Modified: | 28 Nov 2023 03:01 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/93833 |
DOI: | 10.1046/j.0021-8790.2001.00547.x |
Actions (login required)
View Item |