Watts, Anna L., Yu, WenFei, Poutanen, Juri, Zhang, Shu, Bhattacharyya, Sudip, Bogdanov, Slavko, Ji, Long, Patruno, Alessandro, Riley, Thomas E., Bakala, Pavel, Baykal, Altan, Bernardini, Federico, Bombaci, Ignazio, Brown, Edward, Cavecchi, Yuri, Chakrabarty, Deepto, Chenevez, Jérôme, Degenaar, Nathalie, Del Santo, Melania, Di Salvo, Tiziana, Doroshenko, Victor, Falanga, Maurizio, Ferdman, Robert D. ORCID: https://orcid.org/0000-0002-2223-1235, Feroci, Marco, Gambino, Angelo F., Ge, MingYu, Greif, Svenja K., Guillot, Sebastien, Gungor, Can, Hartmann, Dieter H., Hebeler, Kai, Heger, Alexander, Homan, Jeroen, Iaria, Rosario, Zand, Jean in't., Kargaltsev, Oleg, Kurkela, Aleksi, Lai, XiaoYu, Li, Ang, Li, XiangDong, Li, ZhaoSheng, Linares, Manuel, Lu, FangJun, Mahmoodifar, Simin, Méndez, Mariano, Coleman Miller, M., Morsink, Sharon, Nättilä, Joonas, Possenti, Andrea, Prescod-Weinstein, Chanda, Qu, JinLu, Riggio, Alessandro, Salmi, Tuomo, Sanna, Andrea, Santangelo, Andrea, Schatz, Hendrik, Schwenk, Achim, Song, LiMing, Šrámková, Eva, Stappers, Benjamin, Stiele, Holger, Strohmayer, Tod, Tews, Ingo, Tolos, Laura, Török, Gabriel, Tsang, David, Urbanec, Martin, Vacchi, Andrea, Xu, RenXin, Xu, YuPeng, Zane, Silvia, Zhang, GuoBao, Zhang, ShuangNan, Zhang, WenDa, Zheng, ShiJie and Zhou, Xia (2019) Dense matter with eXTP. Science China Physics, Mechanics, and Astronomy, 62 (2). ISSN 1869-1927
Full text not available from this repository.Abstract
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | neutron,x-rays,dense matter,equation of state,astrophysics - high energy astrophysical phenomena |
Faculty \ School: | Faculty of Science > School of Physics (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Quantum Matter Faculty of Science > Research Groups > Numerical Simulation, Statistics & Data Science |
Depositing User: | LivePure Connector |
Date Deposited: | 12 Jul 2023 15:31 |
Last Modified: | 08 Nov 2024 00:52 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/92595 |
DOI: | 10.1007/s11433-017-9188-4 |
Actions (login required)
View Item |