Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index

Reyniers, Nele, Osborn, Timothy J. ORCID: https://orcid.org/0000-0001-8425-6799, Addor, Nans and Darch, Geoff (2023) Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index. Hydrology and Earth System Sciences, 27 (5). pp. 1151-1171. ISSN 1607-7938

[thumbnail of hess-27-1151-2023]
Preview
PDF (hess-27-1151-2023) - Published Version
Available under License Creative Commons Attribution.

Download (8MB) | Preview

Abstract

Droughts cause enormous ecological, economical and societal damage, and they are already undergoing changes due to anthropogenic climate change. The issue of defining and quantifying droughts has long been a substantial source of uncertainty in understanding observed and projected trends. Atmosphere-based drought indicators, such as the Standardised Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), are often used to quantify drought characteristics and their changes, sometimes as the sole metric representing drought. This study presents a detailed systematic analysis of SPI- and SPEI-based drought projections and their differences for Great Britain (GB), derived from the most recent set of regional climate projections for the United Kingdom (UK). We show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought frequency, extent, duration and seasonality using scenarios that are 2 and 4 ∘C above pre-industrial levels. The projected increases in drought frequency and extent are far greater based on the SPEI than based on the SPI. Importantly, compared with droughts of all intensities, isolated extreme droughts are projected to increase far more with respect to frequency and extent and are also expected to show more pronounced changes in the distribution of their event durations. Further, projected intensification of the seasonal cycle is reflected in an increasing occurrence of years with (extremely) dry summers combined with wetter-than-average winters. Increasing summer droughts also form the main contribution to increases in annual droughts, especially using the SPEI. These results show that the choice of atmospheric drought index strongly influences the drought characteristics inferred from climate change projections, with a comparable impact to the uncertainty from the climate model parameters or the warming level; therefore, potential users of these indices should carefully consider the importance of potential evapotranspiration in their intended context. The stark differences between SPI- and SPEI-based projections highlight the need to better understand the interplay between increasing atmospheric evaporative demand, moisture availability and drought impacts under a changing climate. The region-dependent projected changes in drought characteristics by two warming levels have important implications for adaptation efforts in GB, and they further stress the need for rapid mitigation.

Item Type: Article
Additional Information: Funding Information: This research has been supported by the Anglian Water Ltd. (grant "Drought risk and its management in a changing climate") and the University of East Anglia (grant no. 100295261RA1).
Uncontrolled Keywords: water science and technology,earth and planetary sciences (miscellaneous) ,/dk/atira/pure/subjectarea/asjc/2300/2312
Faculty \ School: Faculty of Science > School of Environmental Sciences
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
Faculty of Science > Research Groups > Climatic Research Unit
Faculty of Social Sciences > Research Centres > Water Security Research Centre
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 20 Mar 2023 12:46
Last Modified: 14 Jun 2023 14:13
URI: https://ueaeprints.uea.ac.uk/id/eprint/91581
DOI: 10.5194/hess-27-1151-2023

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item