Swainsbury, David J. K., Qian, Pu, Jackson, Philip J., Faries, Kaitlyn M., Niedzwiedzki, Dariusz M., Martin, Elizabeth C., Farmer, David A., Malone, Lorna A., Thompson, Rebecca F., Ranson, Neil A., Canniffe, Daniel P., Dickman, Mark J., Holten, Dewey, Kirmaier, Christine, Hitchcock, Andrew and Hunter, C. Neil (2021) Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Science Advances, 7 (3). ISSN 2375-2548
Preview |
PDF (sciadv_abe2631)
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris. A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.
Item Type: | Article |
---|---|
Additional Information: | Funding: D.J.K.S., P.Q., P.J.J., E.C.M., D.P.C., A.H., and C.N.H. were supported by the Biotechnology and Biological Sciences Research Council award number BB/M000265/1. A.H. also acknowledges support from a Royal Society University Research Fellowship (award number URF\R1\191548). C.N.H. further acknowledges Engineering and Physical Sciences Research Council award number EP/S002103/1 and European Research Council Synergy award number 854126. K.M.F., D.M.N., C.K., and D.H. acknowledge support by the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC 0001035 for the photophysical studies. D.A.F. was supported by a University of Sheffield doctoral scholarship. L.A.M. was supported by a White Rose doctoral studentship. R.F.T. and N.A.R were funded by the University of Leeds (UoL ABSL award) and Wellcome Trust (108466/Z/15/Z). M.J.D. acknowledges support from the Biotechnology and Biological Sciences Research Council (United Kingdom) (BB/M012166/1). |
Uncontrolled Keywords: | general ,/dk/atira/pure/subjectarea/asjc/1000 |
Faculty \ School: | Faculty of Science > School of Biological Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Molecular Microbiology |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 17 Aug 2022 14:30 |
Last Modified: | 11 Jan 2025 00:58 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/87388 |
DOI: | 10.1126/sciadv.abe2631 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |