The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

Ramonet, M., Ciais, P., Apadula, F., Bartyzel, J., Bastos, A., Bergamaschi, P., Blanc, P. E., Brunner, D., Caracciolo Di Torchiarolo, L., Calzolari, F., Chen, H., Chmura, L., Colomb, A., Conil, S., Cristofanelli, P., Cuevas, E., Curcoll, R., Delmotte, M., Di Sarra, A., Emmenegger, L., Forster, G., Frumau, A., Gerbig, C., Gheusi, F., Hammer, S., Haszpra, L., Hatakka, J., Hazan, L., Heliasz, M., Henne, S., Hensen, A., Hermansen, O., Keronen, P., Kivi, R., Komínková, K., Kubistin, D., Laurent, O., Laurila, T., Lavric, J. V., Lehner, I., Lehtinen, K. E. J., Leskinen, A., Leuenberger, M., Levin, I., Lindauer, M., Lopez, M., Myhre, C. Lund, Mammarella, I., Manca, G., Manning, A. ORCID: https://orcid.org/0000-0001-6952-7773, Marek, M. V., Marklund, P., Martin, D., Meinhardt, F., Mihalopoulos, N., Mölder, M., Morgui, J. A., Necki, J., O'Doherty, S., O'Dowd, C., Ottosson, M., Philippon, C., Piacentino, S., Pichon, J. M., Plass-Duelmer, C., Resovsky, A., Rivier, L., Rodó, X., Sha, M. K., Scheeren, H. A., Sferlazzo, D., Spain, T. G., Stanley, K. M., Steinbacher, M., Trisolino, P., Vermeulen, A., Vítková, G., Weyrauch, D., Xueref-Remy, I., Yala, K. and Yver Kwok, C. (2020) The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philosophical Transactions of the Royal Society B: Biological Sciences, 375 (1810). ISSN 0962-8436

Full text not available from this repository. (Request a copy)

Abstract

During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.

Item Type: Article
Additional Information: Data accessibility: Atmospheric CO2data from the 48 surface stations areavailable at the ICOS Carbon Portal (https://www.icos-cp.eu/):doi:10.18160/ere9-9d85. Total column data from SOD station areavailable at the TCCON server (https://tccon-wiki.caltech.edu/Net-work_Policy/Data_Use_Policy). Funding Information: The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The Cabauw measurements have been supported by the Dutch government as well as national and European projects. The Hegyhatsall measurements have been supported by the Hungarian Meteorological Service, and funded by the project OTKA K129118. For Bialystok, we wish to acknowledge the support of the Max Planck Society and AeroMeteo Service Krzysztof Katryński. Operation of the Krešín u Pacova station was supported by the Ministry of Education, Youth and Sports of CR within the CzeCOS program, grant number LM2015061 and within the National Sustainability Program I (NPU I), grant number LO1415. Measurements at Lampedusa were supported by the Italian Ministry for University and Research through project NextData and the ICOS-Italy Joint Research Unit. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624.
Uncontrolled Keywords: atmospheric co 2 measurements,drought,icos,net ecosystem exchange,biochemistry, genetics and molecular biology(all),agricultural and biological sciences(all),sdg 15 - life on land ,/dk/atira/pure/subjectarea/asjc/1300
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
University of East Anglia Schools > Faculty of Science > Tyndall Centre for Climate Change Research
Faculty of Science > Research Centres > Tyndall Centre for Climate Change Research
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 15 Jun 2022 10:30
Last Modified: 13 Apr 2023 14:33
URI: https://ueaeprints.uea.ac.uk/id/eprint/85631
DOI: 10.1098/rstb.2019.0513

Actions (login required)

View Item View Item