Hurtado-Gallego, Juan, Sangtarash, Sara, Davidson, Ross, Rincón-García, Laura, Daaoub, Abdalghani, Rubio-Bollinger, Gabino, Lambert, Colin J., Oganesyan, Vasily S. ORCID: https://orcid.org/0000-0002-8738-1146, Bryce, Martin R., Agraït, Nicolás and Sadeghi, Hatef (2022) Thermoelectric enhancement in single organic radical molecules. Nano Letters, 22 (3). pp. 948-953. ISSN 1530-6984
Preview |
PDF (acs.nanolett.1c03698)
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Organic thermoelectric materials have potential for wearable heating, cooling, and energy generation devices at room temperature. For this to be technologically viable, high-conductance (G) and high-Seebeck-coefficient (S) materials are needed. For most semiconductors, the increase in S is accompanied by a decrease in G. Here, using a combined experimental and theoretical investigation, we demonstrate that a simultaneous enhancement of S and G can be achieved in single organic radical molecules, thanks to their intrinsic spin state. A counterintuitive quantum interference (QI) effect is also observed in stable Blatter radical molecules, where constructive QI occurs for a meta-connected radical, leading to further enhancement of thermoelectric properties. Compared to an analogous closed-shell molecule, the power factor is enhanced by more than 1 order of magnitude in radicals. These results open a new avenue for the development of organic thermoelectric materials operating at room temperature.
Item Type: | Article |
---|---|
Additional Information: | Funding Information: H.S. acknowledges the UKRI for Future Leaders Fellowship number MR/S015329/2. S.S. acknowledges the Leverhulme Trust for Early Career Fellowship no. ECF-2018-375. J.H.-G., R.D., L.R.-G., C.J.L, M.R.B., and N.A. acknowledge funding from EC H2020 FET Open project grant agreement number 767187 “QuIET”. M.R.B. thanks EPSRC grant EP/K0394/23/1 and EC H2020 FET Open project grant agreement number 766853 “EFINED” for funding. N.A. and L.R.-G. acknowledge funding from the Education and Research Council of the Comunidad de Madrid and the European Social Fund (ref. PEJD-2019-POST/IND-16353). N.A. and G.R.-B. acknowledge funding from the Comunidad de Madrid NANOMAGCOST-CM (P2018/NMT-4321) and from the Spanish Ministry of Science and Innovation, through grants MAT2017-88693-R and the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M). V.S.O. acknowledges support from EPRSC (Grant EP/P007554/1). |
Uncontrolled Keywords: | energy harvesting,organic thermoelectricity,quantum transport,single radical molecules,bioengineering,chemistry(all),materials science(all),condensed matter physics,mechanical engineering ,/dk/atira/pure/subjectarea/asjc/1500/1502 |
Faculty \ School: | Faculty of Science > School of Chemistry (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Chemistry of Light and Energy Faculty of Science > Research Groups > Chemistry of Life Processes Faculty of Science > Research Centres > Centre for Molecular and Structural Biochemistry Faculty of Science > Research Groups > Centre for Photonics and Quantum Science |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 30 Mar 2022 09:30 |
Last Modified: | 23 Oct 2024 23:58 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/84344 |
DOI: | 10.1021/acs.nanolett.1c03698 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |