Particle motion: The missing link in underwater acoustic ecology

Nedelec, Sophie L., Campbell, James, Radford, Andrew N., Simpson, Stephen D. and Merchant, Nathan D. ORCID: https://orcid.org/0000-0002-1090-0016 (2016) Particle motion: The missing link in underwater acoustic ecology. Methods in Ecology and Evolution, 7 (7). pp. 836-842. ISSN 2041-210X

Full text not available from this repository. (Request a copy)

Abstract

1. Sound waves in water have both a pressure and a particle-motion component, yet few studies of underwater acoustic ecology have measured the particle-motion component of sound. While mammal hearing is based on detection of sound pressure, fish and invertebrates (i.e. most aquatic animals) primarily sense sound using particle motion. Particle motion can be calculated indirectly from sound pressure measurements under certain conditions, but these conditions are rarely met in the shelf-sea and shallow-water habitats that most aquatic organisms inhabit. Direct measurements of particle motion have been hampered by the availability of instrumentation and a lack of guidance on data analysis methods. 2. Here, we provide an introduction to the topic of underwater particle motion, including the physics and physiology of particle-motion reception. We include a simple computer program for users to determine whether they are working in conditions where measurement of particle motion may be relevant. We discuss instruments that can be used to measure particle motion and the types of analysis appropriate for data collected. A supplemental tutorial and template computer code in matlab will allow users to analyse impulsive, continuous and fluctuating sounds from both pressure and particle-motion recordings. 3. A growing body of research is investigating the role of sound in the functioning of aquatic ecosystems, and the ways in which sound influences animal behaviour, physiology and development. This work has particular urgency for policymakers and environmental managers, who have a responsibility to assess and mitigate the risks posed by rising levels of anthropogenic noise in aquatic ecosystems. As this paper makes clear, because many aquatic animals senses sound using particle motion, this component of the sound field must be addressed if acoustic habitats are to be managed effectively.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Groups > Collaborative Centre for Sustainable Use of the Seas
Depositing User: LivePure Connector
Date Deposited: 28 Mar 2022 09:30
Last Modified: 23 Oct 2022 03:40
URI: https://ueaeprints.uea.ac.uk/id/eprint/84296
DOI: 10.1111/2041-210x.12544

Actions (login required)

View Item View Item