Sensorimotor, language, and working memory representation within the human cerebellum

Ashida, Reiko, Cerminara, Nadia L., Edwards, Richard J., Apps, Richard and Brooks, Jonathan C. W. ORCID: https://orcid.org/0000-0003-3335-6209 (2019) Sensorimotor, language, and working memory representation within the human cerebellum. Human Brain Mapping, 40 (16). pp. 4732-4747. ISSN 1065-9471

[thumbnail of HumanBrainMapping_2019_Ashida_etal]
Preview
PDF (HumanBrainMapping_2019_Ashida_etal) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

The cerebellum is involved in a wide range of behaviours. A key organisational principle from animal studies is that somatotopically corresponding sensory input and motor output reside in the same cerebellar cortical areas. However, compelling evidence for a similar arrangement in humans and whether it extends to cognitive functions is lacking. To address this, we applied cerebellar optimised whole-brain functional MRI in 20 healthy subjects. To assess spatial overlap within the sensorimotor and cognitive domains, we recorded activity to a sensory stimulus (vibrotactile) and a motor task; the Sternberg verbal working memory (VWM) task; and a verb generation paradigm. Consistent with animal data, sensory and motor activity overlapped with a somatotopic arrangement in ipsilateral areas of the anterior and posterior cerebellum. During the maintenance phase of the Sternberg task, a positive linear relationship between VWM load and activity was observed in right Lobule VI, extending into Crus I bilaterally. Articulatory movement gave rise to bilateral activity in medial Lobule VI. A conjunction of two independent language tasks localised activity during verb generation in right Lobule VI-Crus I, which overlapped with activity during VWM. These results demonstrate spatial compartmentalisation of sensorimotor and cognitive function in the human cerebellum, with each area involved in more than one aspect of a given behaviour, consistent with an integrative function. Sensorimotor localisation was uniform across individuals, but the representation of cognitive tasks was more variable, highlighting the importance of individual scans for mapping higher order functions within the cerebellum.

Item Type: Article
Additional Information: Research Funding: Action Medical Research. Grant Number: SP4619; U.K. Medical Research Council. Grant Number: G0700238
Uncontrolled Keywords: sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Social Sciences > School of Psychology
Depositing User: LivePure Connector
Date Deposited: 10 Feb 2022 10:30
Last Modified: 23 Oct 2022 03:32
URI: https://ueaeprints.uea.ac.uk/id/eprint/83398
DOI: 10.1002/hbm.24733

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item