Trends, variations and prediction of staff sickness absence rates among NHS ambulance services in England: a time series study

Asghar, Zahid B., Wankhade, Paresh, Bell, Fiona, Sanderson, Kristy ORCID: https://orcid.org/0000-0002-3132-2745, Hird, Kelly, Phung, Viet-Hai and Siriwardena, Aloysius Niroshan (2021) Trends, variations and prediction of staff sickness absence rates among NHS ambulance services in England: a time series study. BMJ Open, 11 (9). ISSN 2044-6055

[thumbnail of Published_Version]
Preview
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB) | Preview

Abstract

Objectives: Our aim was to measure ambulance sickness absence rates over time, comparing ambulance services and investigate the predictability of rates for future forecasting. Setting: All English ambulance services, UK. Design: We used a time series design analysing published monthly National Health Service staff sickness rates by gender, age, job role and region, comparing the 10 regional ambulance services in England between 2009 and 2018. Autoregressive Integrated Moving Average (ARIMA) and Seasonal ARIMA (SARIMA) models were developed using Stata V.14.2 and trends displayed graphically. Participants: Individual participant data were not available. The total number of full-time equivalent (FTE) days lost due to sickness absence (including non-working days) and total number of days available for work for each staff group and level were available. In line with The Data Protection Act, if the organisation had less than 330 FTE days available during the study period it was censored for analysis. Results: A total of 1117 months of sickness absence rate data for all English ambulance services were included in the analysis. We found considerable variation in annual sickness absence rates between ambulance services and over the 10-year duration of the study in England. Across all the ambulance services the median days available were 1 336 888 with IQR of 548 796 and 73 346 median days lost due to sickness absence, with IQR of 30 551 days. Among clinical staff sickness absence varied seasonally with peaks in winter and falls over summer. The winter increases in sickness absence were largely predictable using seasonally adjusted (SARIMA) time series models. Conclusion: Sickness rates for clinical staff were found to vary considerably over time and by ambulance trust. Statistical models had sufficient predictive capability to help forecast sickness absence, enabling services to plan human resources more effectively at times of increased demand.

Item Type: Article
Additional Information: Data availability statement: Data are available on reasonable request. Data are available on reasonable request from NHS digital.
Uncontrolled Keywords: change management,health economics,health policy,health services administration & management,human resource management,organisation of health services,medicine(all),sdg 3 - good health and well-being ,/dk/atira/pure/subjectarea/asjc/2700
Faculty \ School: Faculty of Medicine and Health Sciences > School of Health Sciences
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Centres > Norwich Institute for Healthy Aging
Faculty of Medicine and Health Sciences > Research Groups > Health Promotion
Faculty of Medicine and Health Sciences > Research Centres > Lifespan Health
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 05 Oct 2021 01:20
Last Modified: 19 Oct 2023 03:06
URI: https://ueaeprints.uea.ac.uk/id/eprint/81538
DOI: 10.1136/bmjopen-2021-053885

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item