Matrix-free hyperfluorescent organic light-emitting diodes based on carbene-metal-amides

Cho, Hwan-Hee, Romanov, Alexander S., Bochmann, Manfred ORCID:, Greenham, Neil C. and Credgington, Dan (2021) Matrix-free hyperfluorescent organic light-emitting diodes based on carbene-metal-amides. Advanced Optical Materials, 9 (5). ISSN 2195-1071

[thumbnail of matrix-free hyperfluorescent OLEDs_AOM_final] Microsoft Word (OpenXML) (matrix-free hyperfluorescent OLEDs_AOM_final) - Accepted Version
Available under License Unspecified licence.

Download (2MB)


A wide-gap host matrix is a major obstacle detrimentally influencing the performance of hyperfluorescent organic light-emitting diodes since it substantially increases driving voltage. Moreover, these hyperfluorescent devices typically require at least three components in their emitting layer, which is unfavorable for mass production. To tackle the issue, we report hyperfluorescent organic light-emitting diodes based on a two-component emissive system of carbene-metal-amide donors and conventional fluorescent acceptors. We demonstrate a significant reduction of the driving voltage versus three-component hyperfluorescent devices at practical brightness (1000 cdm-2), leading to a doubling of power conversion efficiency for some composites. From an analysis of thin-film photophysics, it is shown that operational efficiency is limited by Dexter energy transfer between donors and acceptors, which may be reduced by tert-butyl steric substituents, providing new targets for molecular design. While reducing driving voltage, matrix-free hyperfluorescent devices also achieve a maximum external quantum efficiency of 16.5%.

Item Type: Article
Uncontrolled Keywords: carbene–metal–amides,exciton energy transfer,hyperfluorescent oleds,electronic, optical and magnetic materials,atomic and molecular physics, and optics ,/dk/atira/pure/subjectarea/asjc/2500/2504
Faculty \ School: Faculty of Science > School of Chemistry
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 31 Dec 2020 22:20
Last Modified: 22 Oct 2022 07:35
DOI: 10.1002/adom.202001965

Actions (login required)

View Item View Item