Carreca, Anna P., Pravatà, Veronica M., Markham, Matthew, Bonelli, Simone, Murphy, Gillian, Nagase, Hideaki, Troeberg, Linda ORCID: https://orcid.org/0000-0003-0939-4651 and Scilabra, Simone D. (2020) TIMP-3 facilitates binding of target metalloproteinases to the endocytic receptor LRP-1 and promotes scavenging of MMP-1. Scientific Reports, 10. ISSN 2045-2322
Preview |
PDF (SciRep_2020_Carreca_etal)
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Matrix metalloproteinases (MMPs) and the related families of disintegrin metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats (ADAMTSs) play a crucial role in extracellular matrix (ECM) turnover and shedding of cell-surface molecules. The proteolytic activity of metalloproteinases is post-translationally regulated by their endogenous inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs). Several MMPs, ADAMTSs and TIMPs have been reported to be endocytosed by the low-density lipoprotein receptor-related protein-1 (LRP-1). Different binding affinities of these proteins for the endocytic receptor correlate with different turnover rates which, together with differences in their mRNA expression, determines their nett extracellular levels. In this study, we used surface plasmon resonance to evaluate the affinity between LRP-1 and a number of MMPs, ADAMs, ADAMTSs, TIMPs and metalloproteinase/TIMP complexes. This identified MMP-1 as a new LRP-1 ligand. Among the proteins analyzed, TIMP-3 bound to LRP-1 with highest affinity (KD = 1.68 nM). Additionally, we found that TIMP-3 can facilitate the clearance of its target metalloproteinases by bridging their binding to LRP-1. For example, the free form of MMP-1 was found to have a KD of 34.6 nM for LRP-1, while the MMP-1/TIMP-3 complex had a sevenfold higher affinity (KD = 4.96 nM) for the receptor. TIMP-3 similarly bridged binding of MMP-13 and MMP-14 to LRP-1. TIMP-1 and TIMP-2 were also found to increase the affinity of target metalloproteinases for LRP-1, albeit to a lesser extent. This suggests that LRP-1 scavenging of TIMP/metalloproteinase complexes may be a general mechanism by which inhibited metalloproteinases are removed from the extracellular environment.
Item Type: | Article |
---|---|
Faculty \ School: | Faculty of Medicine and Health Sciences > Norwich Medical School |
UEA Research Groups: | Faculty of Medicine and Health Sciences > Research Groups > Musculoskeletal Medicine Faculty of Medicine and Health Sciences > Research Centres > Metabolic Health |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 29 Jul 2020 23:53 |
Last Modified: | 31 Jan 2024 02:41 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/76306 |
DOI: | 10.1038/s41598-020-69008-9 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |