Photocathode-assisted redox flow desalination

Liang, Mengjun, Feng, Kuang, Karthick, Ramalingam, Zhang, Liguo, Shi, Yumeng, Hui, Kwan San ORCID: https://orcid.org/0000-0001-7089-7587, Hui, Kwun Nam, Jiang, Feng and Chen, Fuming (2020) Photocathode-assisted redox flow desalination. Green Chemistry, 22 (13). pp. 4133-4139. ISSN 1463-9262

[thumbnail of Accepted_Manuscript]
Preview
PDF (Accepted_Manuscript) - Accepted Version
Download (969kB) | Preview

Abstract

Desalination techniques, such as reverse osmosis, distillation, capacitive deionization, and battery desalination, require lots of electrical or thermal energy consumption. Herein, we propose a consumption-free electrochemical desalination method based on a light-driven photocathode with a Pt/CdS/Cu2ZnSnS4(CZTS)/Mo architecture. Modification of a CdS layer on CZTS can improve the desalination performance due to the formation of inner p–n junction between CdS and CZTS which enhances the separation of the photoexcited carriers without recombination. This photocathode-assisted electrodialysis desalination plays the dual functions of both energy conversion and ion removal with the blocking of ion exchange membranes. The [Fe(CN)6]3−/4− redox couples are recirculated between the anode and photo-cathode as the electrolyte while the salt streams are fed into the middle compartment. Under light illumination, this architecture produces photo-generated electrons to the redox couples with the conversion of [Fe(CN)6]3− to [Fe(CN)6]4− at the positive chamber, causing cation capture in the presence of an ion-exchange membrane. At the same time, [Fe(CN)6]4− is oxidized at the negative reservoir. The light-driven electrochemical reaction of electrolyte redox couples can result in a continuous desalination process. This work will be significant for consumption-free photoelectrochemical desalination research.

Item Type: Article
Uncontrolled Keywords: sdg 7 - affordable and clean energy ,/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy
Faculty \ School: Faculty of Science > School of Engineering (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Emerging Technologies for Electric Vehicles (former - to 2024)
Faculty of Science > Research Groups > Energy Materials Laboratory
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 23 Jul 2020 23:48
Last Modified: 05 Jan 2025 01:03
URI: https://ueaeprints.uea.ac.uk/id/eprint/76260
DOI: 10.1039/D0GC01191F

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item