Genome-Scale Metabolic Model Driven Design of a Defined Medium for Campylobacter jejuni M1cam

Tejera, Noemi, Crossman, Lisa, Pearson, Bruce, Stoakes, Emily, Nasher, Fauzy, Djeghout, Bilal, Poolman, Mark, Wain, John and Singh, Dipali (2020) Genome-Scale Metabolic Model Driven Design of a Defined Medium for Campylobacter jejuni M1cam. Frontiers in Microbiology, 11. ISSN 1664-302X

[img]
Preview
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (659kB) | Preview

Abstract

Campylobacter jejuni, the most frequent cause of food-borne bacterial gastroenteritis, is a fastidious organism when grown in the laboratory. Oxygen is required for growth, despite the presence of the metabolic mechanism for anaerobic respiration. Amino acid auxotrophies are variably reported and energy metabolism can occur through several electron donor/acceptor combinations. Overall, the picture is one of a flexible, but vulnerable metabolism. To understand Campylobacter metabolism, we have constructed a fully curated, metabolic model for the reference organism M1 (our variant is M1cam) and validated it through laboratory experiments. Our results show that M1cam is auxotrophic for methionine, niacinamide, and pantothenate. There are complete biosynthesis pathways for all amino acids except methionine and it can produce energy, but not biomass, in the absence of oxygen. M1cam will grow in DMEM/F-12 defined media but not in the previously published Campylobacter specific defined media tested. Using the model, we identified potential auxotrophies and substrates that may improve growth. With this information, we designed simple defined media containing inorganic salts, the auxotrophic substrates, L-methionine, niacinamide, and pantothenate, pyruvate and additional amino acids L-cysteine, L-serine, and L-glutamine for growth enhancement. Our defined media supports a 1.75-fold higher growth rate than Brucella broth after 48 h at 37°C and sustains the growth of other Campylobacter jejuni strains. This media can be used to design reproducible assays that can help in better understanding the adaptation, stress resistance, and the virulence mechanisms of this pathogen. We have shown that with a well-curated metabolic model it is possible to design a media to grow this fastidious organism. This has implications for the investigation of new Campylobacter species defined through metagenomics, such as C. infans.

Item Type: Article
Uncontrolled Keywords: auxotrophy,campylobacter jejuni,defined growth media,genome-scale metabolic model,linear programming,metabolic network,metabolism,microbiology,microbiology (medical) ,/dk/atira/pure/subjectarea/asjc/2400/2404
Faculty \ School: Faculty of Science > School of Biological Sciences
Faculty of Medicine and Health Sciences > Norwich Medical School
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 17 Jul 2020 23:46
Last Modified: 30 Nov 2020 00:49
URI: https://ueaeprints.uea.ac.uk/id/eprint/76167
DOI: 10.3389/fmicb.2020.01072

Actions (login required)

View Item View Item