Storck-Tonon, Danielle, da Silva, Ricardo José, Sawaris, Lucas, Vaz-de-Mello, Fernando Z., da Silva, Dionei José and Peres, Carlos A. ORCID: https://orcid.org/0000-0002-1588-8765 (2020) Habitat patch size and isolation drive the near-complete collapse of Amazonian dung beetle assemblages in a 30-year-old forest archipelago. Biodiversity and Conservation, 29 (7). pp. 2419-2438. ISSN 0960-3115
Full text not available from this repository. (Request a copy)Abstract
The creation of mega-hydropower dams inundates vast lowland areas, causing widespread environmental impacts in tropical forest regions. Few studies, however, have taken advantage of these newly fragmented landscapes to examine the effects of habitat insularization on arthropod faunas. Here, we assess how dung beetle assemblages respond to 30 years of post-isolation history in forest islands within a major hydroelectric reservoir in Central Amazonia. We sampled 30 of the 3546 islands created by this reservoir, and three neighbouring forest sites. We collected a total of 865 individuals representing 34 dung beetle species and 15 genera. Remarkably, one third of all islands had been entirely defaunated of dung beetles in terms of overall occupancy. Isolation was the single best predictor of dung beetle species richness, followed by the interaction between isolation and island area, and these variables were key determinants of the relict species composition. Isolation was the most important predictor of dung beetle abundance, but area alone was the main predictor of abundance when the dominant species was excluded. We predicted species richness across all 3546 islands, indicating that 61.5% of all islands likely retain only a single ‘super-tramp’ species (Onthophagus osculatii). These community disassembly patterns were likely aggravated by the marked hostility of the open-water matrix combined with the poor flight dispersal capacity of dung beetles over wide gaps between insular forests. As such, the overwhelming number of small, isolated islands created by major dams has profound effects on regional forest biodiversity, including wholesale local extinctions in detritivore assemblages and their ecosystem functions.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | disassembly,extinction dynamics,habitat fragmentation,hydroelectric dams,island biogeography,scarabaeinae,ecology, evolution, behavior and systematics,ecology,nature and landscape conservation ,/dk/atira/pure/subjectarea/asjc/1100/1105 |
Faculty \ School: | Faculty of Science > School of Environmental Sciences University of East Anglia Research Groups/Centres > Theme - ClimateUEA |
UEA Research Groups: | Faculty of Science > Research Groups > Environmental Biology Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 12 Jun 2020 00:14 |
Last Modified: | 09 Oct 2024 13:35 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/75571 |
DOI: | 10.1007/s10531-020-01982-y |
Actions (login required)
View Item |