Bakbergenuly, Ilyas, Hoaglin, David C. and Kulinskaya, Elena (2019) Simulation study of estimating between-study variance and overall effect in meta-analysis of odds-ratios. ArXiv e-prints.
Full text not available from this repository. (Request a copy)Abstract
Random-effects meta-analysis requires an estimate of the between-study variance, $\tau^2$. We study methods of estimation of $\tau^2$ and its confidence interval in meta-analysis of odds ratio, and also the performance of related estimators of the overall effect. We provide results of extensive simulations on five point estimators of $\tau^2$ (the popular methods of DerSimonian-Laird, restricted maximum likelihood, and Mandel and Paule; the less-familiar method of Jackson; and the new method (KD) based on the improved approximation to the distribution of the Q statistic by Kulinskaya and Dollinger (2015)); five interval estimators for $\tau^2$ (profile likelihood, Q-profile, Biggerstaff and Jackson, Jackson, and KD), six point estimators of the overall effect (the five inverse-variance estimators related to the point estimators of $\tau^2$ and an estimator (SSW) whose weights use only study-level sample sizes), and eight interval estimators for the overall effect (five based on the point estimators for $\tau^2$; the Hartung-Knapp-Sidik-Jonkman (HKSJ) interval; a KD-based modification of HKSJ; and an interval based on the sample-size-weighted estimator). Results of our simulations show that none of the point estimators of $\tau^2$ can be recommended, however the new KD estimator provides a reliable coverage of $\tau^2$. Inverse-variance estimators of the overall effect are substantially biased. The SSW estimator of the overall effect and the related confidence interval provide the reliable point and interval estimation of log-odds-ratio.
Item Type: | Article |
---|---|
Additional Information: | 13 pages main text, and 4 Appendices containing 300 pages of A4 figures |
Uncontrolled Keywords: | stat.me |
Faculty \ School: | Faculty of Science > School of Computing Sciences |
UEA Research Groups: | Faculty of Medicine and Health Sciences > Research Centres > Business and Local Government Data Research Centre (former - to 2023) Faculty of Science > Research Groups > Data Science and AI Faculty of Science > Research Groups > Norwich Epidemiology Centre Faculty of Medicine and Health Sciences > Research Groups > Norwich Epidemiology Centre |
Depositing User: | LivePure Connector |
Date Deposited: | 11 Jun 2020 01:28 |
Last Modified: | 25 Sep 2024 14:44 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/75540 |
DOI: |
Actions (login required)
View Item |