The NANOGrav 11 yr data set: Limits on gravitational waves from individual supermassive black hole binaries

Aggarwal, K., Aggarwal, K., Arzoumanian, Z., Baker, P. T., Brazier, A., Brinson, M. R., Brook, P. R., Burke-Spolaor, S., Chatterjee, S., Cordes, J. M., Cornish, N. J., Crawford, F., Crowter, K., Cromartie, H. T., Decesar, M., Demorest, P. B., Dolch, T., Ellis, J. A., Ferdman, R. D. ORCID: https://orcid.org/0000-0002-2223-1235, Ferrara, E., Fonseca, E., Garver-Daniels, N., Gentile, P., Hazboun, J. S., Holgado, A. M., Huerta, E. A., Islo, K., Jennings, R., Jones, G., Jones, M. L., Kaiser, A. R., Kaplan, D. L., Kelley, L. Z., Key, J. S., Lam, M. T., Lazio, T. J.W., Levin, L., Lorimer, D. R., Luo, J., Lynch, R. S., Madison, D. R., McLaughlin, M. A., McWilliams, S. T., Mingarelli, C. M.F., Ng, C., Nice, D. J., Pennucci, T. T., Pol, N. S., Taylor, S. R. and Turner, J. E. and NANOGrav Collaboration (2019) The NANOGrav 11 yr data set: Limits on gravitational waves from individual supermassive black hole binaries. Astrophysical Journal, 880 (2). ISSN 0004-637X

Full text not available from this repository.

Abstract

Observations indicate that nearly all galaxies contain supermassive black holes at their centers. When galaxies merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves (GWs) that can be detected by pulsar timing arrays. We have searched the North American Nanohertz Observatory for Gravitational Waves 11 yr data set for GWs from individual SMBHBs in circular orbits. As we did not find strong evidence for GWs in our data, we placed 95% upper limits on the strength of GWs from such sources. At fgw = 8 nHz, we placed a sky-averaged upper limit of h0 ≤ 7.3(3) × 10-15. We also developed a technique to determine the significance of a particular signal in each pulsar using "dropout" parameters as a way of identifying spurious signals. From these upper limits, we ruled out SMBHBs emitting GWs with fgw = 8 nHz within 120Mpc for M = 109 M⊙, and within 5.5 Gpc for M = 1010 M⊙ at our most sensitive sky location. We also determined that there are no SMBHBs with M ≥ 1.6 × 109 M⊙ emitting GWs with fgw = 2.8-317.8 nHz in the Virgo Cluster. Finally, we compared our strain upper limits to simulated populations of SMBHBs, based on galaxies in the Two Micron All-Sky Survey and merger rates from the Illustris cosmological simulation project, and found that only 34 out of 75,000 realizations of the local universe contained a detectable source.

Item Type: Article
Uncontrolled Keywords: gravitational waves,pulsars: general,quasars: supermassive black holes,astronomy and astrophysics,space and planetary science ,/dk/atira/pure/subjectarea/asjc/3100/3103
Faculty \ School: Faculty of Science > School of Physics (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Quantum Matter
Faculty of Science > Research Groups > Numerical Simulation, Statistics & Data Science
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 06 Nov 2019 15:31
Last Modified: 07 Nov 2024 12:41
URI: https://ueaeprints.uea.ac.uk/id/eprint/72891
DOI: 10.3847/1538-4357/ab2236

Actions (login required)

View Item View Item