Risk-adjusted CUSUM control charts for shared frailty survival models with application to hip replacement outcomes: a study using the NJR dataset

Begun, Alexander, Kulinskaya, Elena and Macgregor, Alexander ORCID: https://orcid.org/0000-0003-2163-2325 (2019) Risk-adjusted CUSUM control charts for shared frailty survival models with application to hip replacement outcomes: a study using the NJR dataset. BMC Medical Research Methodology, 19. ISSN 1471-2288

[thumbnail of Begun_etal_2019_BMC_MRM]
Preview
PDF (Begun_etal_2019_BMC_MRM) - Published Version
Available under License Creative Commons Attribution.

Download (768kB) | Preview

Abstract

Background:  Continuous monitoring of surgical outcomes after joint replacement is needed to detect which brands’ components have a higher than expected failure rate and are therefore no longer recommended to be used in surgical practice. We developed a monitoring method based on cumulative sum (CUSUM) chart specifically for this application.  Methods:  Our method entails the use of the competing risks model with the Weibull and the Gompertz hazard functions adjusted for observed covariates to approximate the baseline time-to-revision and time-to-death distributions, respectively. The correlated shared frailty terms for competing risks, corresponding to the operating unit, are also included in the model. A bootstrap-based boundary adjustment is then required for risk-adjusted CUSUM charts to guarantee a given probability of the false alarm rates. We propose a method to evaluate the CUSUM scores and the adjusted boundary for a survival model with the shared frailty terms. We also introduce a unit performance quality score based on the posterior frailty distribution. This method is illustrated using the 2003-2012 hip replacement data from the UK National Joint Registry (NJR). Results:  We found that the best model included the shared frailty for revision but not for death. This means that the competing risks of revision and death are independent in NJR data. Our method was superior to the standard NJR methodology. For one of the two monitored components, it produced alarms four years before the increased failure rate came to the attention of the UK regulatory authorities. The hazard ratios of revision across the units varied from 0.38 to 2.28. Conclusions:  An earlier detection of failure signal by our method in comparison to the standard method used by the NJR may be explained by proper risk-adjustment and the ability to accommodate time-dependent hazards. The continuous monitoring of hip replacement outcomes should include risk adjustment at both the individual and unit level.

Item Type: Article
Uncontrolled Keywords: cusum charts; baseline hazard function; risk adjustment; competing risks; shared frailty; bootstrap
Faculty \ School: Faculty of Science > School of Computing Sciences
Faculty of Medicine and Health Sciences > Norwich Medical School
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Centres > Business and Local Government Data Research Centre (former - to 2023)
Faculty of Science > Research Groups > Data Science and Statistics
Faculty of Medicine and Health Sciences > Research Groups > Public Health and Health Services Research (former - to 2023)
Faculty of Medicine and Health Sciences > Research Groups > Epidemiology and Public Health
Faculty of Medicine and Health Sciences > Research Groups > Musculoskeletal Medicine
Faculty of Medicine and Health Sciences > Research Groups > Nutrition and Preventive Medicine
Faculty of Science > Research Groups > Norwich Epidemiology Centre
Faculty of Medicine and Health Sciences > Research Groups > Norwich Epidemiology Centre
Depositing User: LivePure Connector
Date Deposited: 06 Nov 2019 09:30
Last Modified: 21 Apr 2023 00:12
URI: https://ueaeprints.uea.ac.uk/id/eprint/72881
DOI: 10.1186/s12874-019-0853-2

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item