Huber, Katharina and Scholz, Guillaume E. (2020) Phylogenetic networks that are their own fold-ups. Advances in Applied Mathematics, 113. ISSN 0196-8858
Preview |
PDF (revised-final-2019-10-11)
- Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (568kB) | Preview |
Abstract
Phylogenetic networks are becoming of increasing interest to evolutionary biologists due to their ability to capture complex non-treelike evolutionary processes. From a combinatorial point of view, such networks are certain types of rooted directed acyclic graphs whose leaves are labelled by, for example, species. A number of mathematically interesting classes of phylogenetic networks are known. These include the biologically relevant class of stable phylogenetic networks whose members are defined via certain "fold-up" and "un-fold" operations that link them with concepts arising within the theory of, for example, graph fibrations. Despite this exciting link, the structural complexity of stable phylogenetic networks is still relatively poorly understood. Employing the popular tree-based, reticulation-visible, and tree-child properties which allow one to gauge this complexity in one way or another, we provide novel characterizations for when a stable phylogenetic network satisfies either one of these three properties.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | phylogenetic network,reticulation-visible,stable,tree-based,tree-child |
Faculty \ School: | Faculty of Science > School of Computing Sciences |
UEA Research Groups: | Faculty of Science > Research Groups > Computational Biology |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 11 Oct 2019 13:30 |
Last Modified: | 04 Mar 2024 17:51 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/72524 |
DOI: | 10.1016/j.aam.2019.101959 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |