Silva, Jéssica Luiza Souza E, Cruz-Neto, Oswaldo, Peres, Carlos A ORCID: https://orcid.org/0000-0002-1588-8765, Tabarelli, Marcelo and Lopes, Ariadna Valentina (2019) Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies. PLoS One, 14 (5). ISSN 1932-6203
Preview |
PDF (Published_Version)
- Published Version
Available under License Creative Commons Attribution. Download (6MB) | Preview |
Abstract
Global climate change alters the dynamic of natural ecosystems and directly affects species distributions, persistence and diversity. The impacts of climate change may lead to dramatic changes in biotic interactions, such as pollination and seed dispersal. Life history traits are extremely important to consider the vulnerability of a species to climate change, producing more robust models than those based primarily on species distributions. Here, we hypothesized that rising temperatures and aridity will reduce suitable habitats for the endemic flora of the Caatinga, the most diverse dry tropical forest on Earth. Specifically, species with specialized reproductive traits (e.g. vertebrate pollination, biotic dispersal, obligatory cross-pollination) should be more affected by climate change than those with generalist traits. We performed two ecological niche models (current and future) to simulate the effects of climate change on the distribution area of endemic species in relation to life-history traits. We used the MIROC-ESM and CCSM4 models for both intermediate (RCP4.5) and highest predicted (RCP8.5) GHG emission scenarios, with a resolution of 30' (~1 km2). Habitat with high occurrence probability (>80%) of endemic species will be reduced (up to ~10% for trees, ~13% for non-arboreous, 10-28% for species with any pollination/reproductive system), with the greatest reductions for species with specialized reproductive traits. In addition, the likely concentration of endemic plants in the extreme northeastern portion of the Caatinga, in more mesic areas, coincides with the currently most human-modified areas of the ecosystem, which combined with climate change will further contract suitable habitats of endemic species. In conclusion, plant species endemic to the Caatinga are highly vulnerable to even conservative scenarios of future climate change and may lose much of their climatic envelopes. New protected areas should be located in the northeastern portion of the Caatinga, which hosts a more favorable climate, but is currently exposed to escalating agricultural intensification.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | sdg 13 - climate action ,/dk/atira/pure/sustainabledevelopmentgoals/climate_action |
Faculty \ School: | Faculty of Science > School of Environmental Sciences University of East Anglia Research Groups/Centres > Theme - ClimateUEA |
UEA Research Groups: | Faculty of Science > Research Groups > Environmental Biology Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation |
Depositing User: | LivePure Connector |
Date Deposited: | 03 Jun 2019 09:30 |
Last Modified: | 09 Oct 2024 13:35 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/71229 |
DOI: | 10.1371/journal.pone.0217028 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |