Protomer-specific photochemistry investigated using ion mobility mass spectrometry

Bull, James N. ORCID: https://orcid.org/0000-0003-0953-1716, Coughlan, Neville J. A. and Bieske, Evan J. (2017) Protomer-specific photochemistry investigated using ion mobility mass spectrometry. Journal of Physical Chemistry A, 121 (32). pp. 6021-6027. ISSN 1089-5639

Full text not available from this repository.

Abstract

The utility of tandem ion mobility mass spectrometry coupled with electronic spectroscopy to investigate protomer-specific photochemistry is demonstrated by measuring the photoisomerization response for protomers of protonated 4-dicyanomethylene-2-methyl-6-para-dimethylaminostyryl-4H-pyran (DCM) molecules. The target DCMH+ species has three protomers that are distinguished by their different collision cross sections with He, N2, and CO2 buffer gases, trends in abundance with ion source conditions, and from their photoisomerization responses. The trans-DCMH+ protomers with the proton located either on the tertiary amine N atom or on a cyano group N atom exhibit distinct S1← S0 photoisomerization responses, with the maxima in their photoisomerization action spectra occurring at 420 and 625 nm, respectively, consistent with predictions from accompanying electronic structure calculations. The cis-DCMH+ protomers are not distinguishable from one another through ion mobility separation and give no discernible photoisomerization or photodissociation response, suggesting the dominance of other deactivation pathways such as fluorescence. The study demonstrates that isobaric protomers and isomers generated by an electrospray ion source can possess quite different photochemical behaviors and emphasizes the utility of isomer and protomer selective techniques for exploring the spectroscopic and photochemical properties of protonated molecules in the gas phase.

Item Type: Article
Uncontrolled Keywords: physical and theoretical chemistry ,/dk/atira/pure/subjectarea/asjc/1600/1606
Faculty \ School: Faculty of Science > School of Chemistry (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Chemistry of Light and Energy
Faculty of Science > Research Groups > Centre for Photonics and Quantum Science
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 28 Feb 2019 16:30
Last Modified: 25 Sep 2024 13:54
URI: https://ueaeprints.uea.ac.uk/id/eprint/70060
DOI: 10.1021/acs.jpca.7b05800

Actions (login required)

View Item View Item