Liu, Fenjin, Siemons, Johannes and Wang, Wei (2019) New families of graphs determined by their generalized spectrum. Discrete Mathematics, 342 (4). pp. 1108-1112. ISSN 0012-365X
Preview |
PDF (Accepted_Manuscript)
- Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (294kB) | Preview |
Abstract
We construct infinite families of graphs that are determined by their generalized spectrum. This construction is based on new formulae for the determinant of the walk matrix of a graph. All graphs constructed here satisfy a certain extremal divisibility condition for the determinant of their walk matrix.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | graph spectrum,graphs determined by generalized spectrum,walk matrix,theoretical computer science,discrete mathematics and combinatorics ,/dk/atira/pure/subjectarea/asjc/2600/2614 |
Faculty \ School: | Faculty of Science > School of Mathematics (former - to 2024) |
UEA Research Groups: | Faculty of Science > Research Groups > Algebra and Combinatorics (former - to 2024) |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 28 Jan 2019 15:30 |
Last Modified: | 19 Dec 2024 00:56 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/69709 |
DOI: | 10.1016/j.disc.2018.12.020 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |