CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy

Mosqueira, Diogo, Mannhardt, Ingra, Bhagwan, Jamie R., Lis-Slimak, Katarzyna, Katili, Puspita, Scott, Elizabeth, Hassan, Mustafa, Prondzynski, Maksymilian, Harmer, Stephen C., Tinker, Andrew, Smith, James G.W. ORCID: https://orcid.org/0000-0003-0427-8678, Carrier, Lucie, Williams, Philip M., Gaffney, Daniel, Eschenhagen, Thomas, Hansen, Arne and Denning, Chris (2018) CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. European Heart Journal, 39 (43). pp. 3879-3892. ISSN 0195-668X

[thumbnail of Final_Published]
Preview
PDF (Final_Published) - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Aims: Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results: CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 (p.R453C-betaMHC) in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion: Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-betaMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and alphaMHC to energy-efficient betaMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7:MYH6 and mutant:wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms.

Item Type: Article
Uncontrolled Keywords: hypertrophic cardiomyopathy,disease modelling,cas9,genome-edited human pluripotent stem cell-cardiomyocytes,r453c-betamhc,sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Medicine and Health Sciences > Norwich Medical School
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Groups > Cardiovascular and Metabolic Health
Faculty of Medicine and Health Sciences > Research Centres > Metabolic Health
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 10 Jan 2019 16:30
Last Modified: 19 Oct 2023 02:20
URI: https://ueaeprints.uea.ac.uk/id/eprint/69544
DOI: 10.1093/eurheartj/ehy249

Actions (login required)

View Item View Item