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Aims Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex
condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human
pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM.

...................................................................................................................................................................................................
Methods
and results

CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-b-myosin
heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-
throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D
engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hyper-
trophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported
the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium
handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not ome-
camtiv mecarbil, while RNAseq highlighted potentially novel molecular targets.

...................................................................................................................................................................................................
Conclusion Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality.

The engineered R453C-bMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP
production and aMHC to energy-efficient bMHC switching. We showed that pharmacological rescue of arrhyth-
mias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously unde-
scribed lncRNAs and gene modifiers are suggestive of new mechanisms.
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Introduction

Affecting 1:500 individuals, HCM is the most prevalent cardiac dis-
ease,1,2 often leading to sudden cardiac death at a young age
(48 ± 19 years).3 Clinical spectrum varies from asymptomatic to se-
vere cardiac dysfunction.4,5 Half of HCM patients bear mutations in
one or more of >20 sarcomeric genes, leading to variable penetrance
of the disease.6 This implies influence of factors beyond the single
pathogenic mutation, such as genetic background7 and environmental
modifiers.8 Genetic heterogeneity causes phenotypic variability, with
cellular mechanisms including (i) hypertrophy, (ii) foetal gene pro-
gramme initiation, (iii) energy perturbation, (iv) fibrosis, (v) contract-
ile dysfunction, and (vi) impaired calcium cycling.9

Among the sarcomeric genes mutated in patients, MYH7 is preva-
lent (20–50% of genotyped cases).10 MYH7 encodes beta myosin
heavy chain (b-MHC), responsible for regulating actin–myosin inter-
action, hence cardiomyocyte contraction and ultimately cardiac func-
tion.11 Despite clinical and phenotypic heterogeneity, MYH7
mutations are associated with more severe forms of hypertrophy
relative to when other sarcomeric genes are altered. This includes
higher frequencies of ventricular tachycardia, greater disease pene-
trance, higher risk of sudden cardiac death, and earlier onset.12,13

Disease modelling of HCM using hPSC-CMs offers a pathophysio-
logically relevant approach to dissect the mechanics of disease and
identify new targets for pharmacological intervention.14 While previ-
ous MYH7-HCM animal models provided insight into the disease,15,16

data may be misinterpreted due to species differences. Most HCM
hPSC-CM modelling studies have focused on limited features17 and/
or lacked isogenic controls.18,19 This confounds understanding be-
cause impact of genetic background on phenotype can exceed that
caused by the pathogenic mutation.20 The only exception is an inter-
esting, but limited, preview of the potential utility of isogenic lines in
dilated cardiomyopathy via correction of a phospholamban R14del
mutation patient-specific hiPSC-CMs. Impaired cardiac contractility
was restored in corrected 3D engineered cardiac tissue, although
this was the only phenotype assessed.21

We created a comprehensive hPSC-based model of HCM via
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR/Cas9) editing to make a c.C9123T substitution in MYH7,
corresponding to a pathogenic protein change, p.R453C-bMHC. This
included homozygous variants, not previously been reported for any
HCM mutation. Extensive molecular and functional evaluation of iso-
genic hPSC-CMs phenocopied the main hallmarks of hypertrophy,
showing a general association between mutation load and level of
phenotypic perturbation. Key outcomes included partial phenotypic

rescue of arrhythmias with ranolazine, putative diagnostics via ratio-
metric gene analysis, and RNAseq highlighting a potential role of sev-
eral long non-coding RNAs (lncRNA) and gene modifiers. This will
guide future work on mechanistic understanding, management, and
treatment of HCM.

Methods

See Supplementary material online for details.

Results

CRISPR/Cas9 engineering and
characterization of MYH7 variants
Since the c.C9123T-MYH7 mutation associates with HCM patho-
physiology, we coupled a dual gRNA/Cas9-nickase/CRISPR targeting
strategy with subsequent flippase-mediated cassette excision to pro-
duce 9 polymorphic variants (Figures 1A and B; Supplementary mater-
ial online, Figure S1A–E and Tables S1–S3). For each of 3 hPSC lines
(AT1-hiPSC, REBL-PAT-hiPSC, HUES7-hESC), isogenic sets included
9123-MYH7 parental (C/C wild-type, termed WT/WT), heterozy-
gote (T/C, mutant - MUT/WT), and homozygote (T/T, MUT/MUT).
Two additional AT1-hiPSC isogenics were included (Figure 1C;
Supplementary material online, Figure S1F): Line ‘homozygoteþ
MYH6WT/fs’ was mutant (T/T) for 9123-MYH7 with an off-target
frameshift event in one allele of the homologous gene, MYH6. With
the exception of this line, no other off-target events were detected;
Line MYH7 ‘Knockout’ (MYH7-KO) contained the selection cassette,
which disrupted RNA and protein expression; flippase-mediated cas-
sette excision restored expression (Figure 1C). This isogenic approach
minimises the genetic and epigenetic variability seen between individ-
uals and allows impact of the R453C-bMHC mutation to be isolated.

Mono- and bi-allelic targeting frequency across the 11 lines was
16.3–25.5% and 2.6–7.1%, respectively (Supplementary material on-
line, Figure S1D, E). Isogenics maintained pluripotency, including high
efficiency cardiac differentiation; only cultures of >_85% a-actinin
positive were used (Figures 1D, E; Supplementary material online,
S2A–D). b-Myosin heavy chain was expressed, except in MYH7-KO
(Supplementary material online, Figure S2D). Pertinent to HCM, a
ventricular cardiac subtype was predominant (Supplementary mater-
ial online, Figure S3)22–24 By immunostaining, 91.3± 6.4% of cardio-
myocytes were MLC2vþ. Functional data from patch clamp of single
cells or CellOPTIQ-based optical imaging of synchronous mono-
layers (Supplementary material online, Figure S3C, D) showed�60 to

Translational perspectives
Affecting 1:500 people, hypertrophic cardiomyopathy (HCM) is a complex cardiovascular disease of high clinical heterogeneity, which can
cause heart failure. Therapies have remained static, often involving invasive surgery. Differences in physiology and subtleties in gene expression
confound use of animal models and heterologous systems, while usable human material is scarce. To create a new, high-precision model of
HCM, CRISPR/Cas9 engineering produced isogenic b-MHC variants in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs).
Unrivalled molecular and function phenotyping validated HCM hPSC-CM utility, whilst adding clarity to current working hypotheses, showing
potential for pharmacological rescue of arrhythmias, suggesting putative diagnostics, and pointing towards new targets for mechanistic under-
standing and therapeutics.
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90% ventricular-like morphologies using two separate analysis
approaches (APD90/APD50)

23 and (APD80-APD70)/APD40-APD30).
24

Operator bias was reduced wherever possible by high-content
and/or high-throughput approaches (Figures 1–4, and 7; Supplemen-
tary material online, Figures S3, S4, S6, S9), and/or blinding the experi-
menter to genotype (Figures 5 and 6, Supplementary material online,
S7 and S8). While single cell patch clamp can assess genotype-cardiac
subtype correlations,25 we avoided this technique due to low tech-
nical throughput, selection bias, influence of cell density,26 and loss of
electrical syncytium. Dispersal of cardiomyocytes from rabbit ven-
tricular wedges causes high levels of single cell electrophysiological

heterogeneity (personal communication, Godfrey Smith, Glasgow),
an effect also seen in dispersed hPSC-CMs (Supplementary material
online, Figure S3C, D).27

Molecular assessment of b-MHC mutant
hPSC-CMs
We evaluated molecular characteristics of hPSC-CMs from MYH7
isogenic sets to determine which features of HCM were replicated
and clarify outstanding or controversial questions. Unequal expres-
sion of mutant and wild-type MYH7 alleles was reported in

Figure 1 CRISPR/Cas9 engineering of MYH7. (A) Schema of MYH7 highlighting target and Protospacer Adjacent Motif (PAM) for nickase CRISPR/
Cas9 editing. (B) Genotyping of MYH7 in human pluripotent stem cells, introducing c.C9123T and showing a silent mutation (TGG PAM to TCG). (C)
RT-PCR showed selection cassette causes an MYH7 knockout; Flippase-mediated excision restores expression. (D) Immunostaining of cardiac a-acti-
nin human pluripotent stem cell-cardiomyocytes and fibroblast controls (inset); cell mask and DAPI as counterstains. Bar = 100 lm. (E)
Cardiomyocyte differentiation purity >90% a-actinin þ cells; n = 8; Bar = 100mm. (F) RFLP of MYH7, with ratiometric densitometry of MUT: wild-
type (n = 4). FLP, Flippase; MW, molecular weight; NTC, non-template control. Data, mean± SD.
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..ventricular biopsies from HCM patients.28 We used XhoI-based re-
striction fragment length polymorphism (RFLP) analysis on isogenic
hPSC-CMs (Figure 1F). Real time- Polymerase Chain Reaction (RT-
PCR) products from WT/WT lines were refractory to XhoI diges-
tion, while MUT/MUT products were digested to 2 bands. In hetero-
zygotes, the ratio of MUT: WT alleles ranged from 25% to 35%
(HUES7, REBL-PAT) to 60% (AT1), confirming unequal expression
but also variation between lines.

Increased cardiomyocyte size is archetypical of HCM.9 We devel-
oped a novel high-throughput (25 000 cells/sample), non-subjective
and statistically powerful flow cytometry method to calculate hPSC-
CM volume, whilst avoiding pitfalls of 2D analysis, including influence
of cell area by substrate properties,29 time in culture,30 and serum
supplementation.31 Forward scatter of calibration spheres generated
a standard curve, enabling calculation of hPSC-CM size (Figure 2A).
Relative to WT/WT, median volume of edited lines increased

(12–51%), showing bMHC-R453C mutations cause hypertrophy in
hPSC-CMs (Figure 2B, C).

Brain natriuretic peptide (BNP) is elevated >100-fold in plasma
from HCM patients.32 We adapted high-content imaging meth-
ods33 to assess >_60 000 cells/sample for BNP expression in hPSC-
CMs (Figure 3A). Data were binned into high, medium, or low/
negative populations using predetermined empirical thresholds
(Figure 3B; Supplementary material online, S4A–C). There was
general association between percentages of hPSC-CMs express-
ing medium/high levels of BNP and increasing mutation load.
Relative to WT/WT, WT/MUT, and MUT/MUT were �1.5 to 3.3
and �1.9- to 4-fold higher, respectively, with consistency across
the three hPSC lines. Surprisingly, homozygoteþMYH6WT/fs line
and MYH7-KO did not show increased BNP expression, suggest-
ing this phenotype could be specific to the bMHC-453 arginine to
cysteine substitution. Expression of BNP could also be blocked by

Figure 2 Flow cytometry calculation of human pluripotent stem cell-cardiomyocyte hypertrophy. (A) Calibration of forward scatter (FSC) from
predefined beads sizes allowed human pluripotent stem cell-cardiomyocyte size quantification. (B) Violin plots (25 000 cells/sample) show volume of
AT1 (n = 9), REBL-PAT (n = 6), and HUES7 (n = 3) lines. Dotted blue line indicates median of volume of isogenic controls. (C) Box/whiskers plots
show interquartile range of volume, and highlights higher median and first quartile metrics in gene-edited lines. P-values, one-way ANOVA
testþDunnett’s correction; ****Significance all <0.0001.
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Figure 3 Phenotyping hypertrophic cardiomyopathy using high-content imaging. (A) brain natriuretic peptide/cardiac Troponin T (cTnT)/DAPI-
immunostained human pluripotent stem cell-cardiomyocytes (fibroblasts, negative control; inset). Arrows indicate brain natriuretic peptide positive
cells. Bar = 100 lm. (B) Percentage of human pluripotent stem cell-cardiomyocytes with negative, medium, or high brain natriuretic peptide expres-
sion were binned using predetermined thresholds. Bosentan treatment (100 nM) rescued brain natriuretic peptide of mutant lines to isogenic control
levels; Endothelin-1 treatment (10 nM) maximized brain natriuretic peptide expression (n = 6). (C) Images of a-actinin/DAPI-immunostained human
pluripotent stem cell-cardiomyocytes analysed by the algorithm to distinguish between mono-, bi-, and multi-nucleation (Bar = 100 lm), with (D) dis-
playing quantification (n = 8). (E) Images of human pluripotent stem cell-cardiomyocytes immunostained for sarcomeric banding (Bar = 20lm), with
(F) displaying quantification (n = 4). Data, mean ± SD. P-values shown. One-way ANOVA testþDunnett’s correction compared mutant lines vs. their
isogenic control. Student’s t-tests, treated vs. vehicle control (*P < 0.05; **P < 0.01; ***P < 0.005; ****P < 0.0001, absolute numbers in Supplementary
material online, Table S4). Colour-coded by inter-compared category (black asterisks apply to all categories).
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treatment with endothelin-1 (ET1) receptor antagonist, bosen-
tan,34 or exaggerated by the known hypertrophic stimulator,
ET1.33 Response of edited hPSC-CMs generally differed
significantly to WT/WT (Figure 3B; Supplementary material online,
S4A–E).

Multi-nucleation is a controversial feature of HCM in human
hearts. While some reports found bi-nucleated cardiomyocytes
increased in hypertrophied hearts (28.7% vs. 13.5% for healthy),35

others observed no differences.36 We performed dual a-actinin/40,6-
diamidino-2-phenylindole (DAPI) staining of hPSC-CMs from

Figure 4 Cardiac bioenergetics analysis of AT1-hypertrophic cardiomyopathy lines. (A) Mitochondrial respiration profile of AT1 R453C-b-myosin
heavy chain human pluripotent stem cell-cardiomyocytes using the Seahorse platform quantified, (B) basal respiration, (C) maximal respiration, (D)
ATP production (n = 5). (E) qPCR analysis of mitochondrial (ND1-2): nuclear (b-actin) DNA ratio (n = 3). Histograms of human pluripotent stem
cell-cardiomyocytes labelled with (F) mitotracker, (H) CellROX, and (J) MitoSOX obtained by flow cytometry, with corresponding quantification (G,
I, K), n = 5. Data, mean ± SD. P-values are shown. One-way ANOVA testþDunnett’s correction compared mutant lines vs. isogenic control.
Student’s t-tests, treated vs. vehicle control colour-coded by inter-compared category.
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Figure 5 Calcium handling in hypertrophic cardiomyopathy lines by optical mapping. (A) A red-genetically encoded calcium indicator expression
cassette was engineered into AAVS1 of MYH7-mutant human pluripotent stem cell via nickase CRISPR/Cas9 editing. (B) a-Actinin/red-genetically
encoded calcium indicator/DAPI-immunostained human pluripotent stem cell-cardiomyocytes post-gene editing demonstrates expression of the
red-genetically encoded calcium indicator calcium sensor (Bar = 50lm). (C) Optical mapping of R453C-b-myosin heavy chain REBL-PAT cardiomyo-
cytes (n = 10) enabled quantification of (D) beat rate, (E) DAD-like abnormal events, and (F) signal amplitude (correlated with increased systolic
calcium peak). Treatment of gene-edited lines with 1 lM nifedipine (n = 5) is in (G, H). Impact of 1 lM ranolazine (n = 6) on red-genetically encoded
calcium indicator signal amplitude in (I) and frequency of DAD-like events in (J). Data, mean ± SD. P-values, one-way ANOVA testþDunnett’s
correction.
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Figure 6 Contractile force analysis in AT1-human engineered heart tissues. (A) Fibrin-based AT1-human engineered heart tissue attached to sili-
cone posts (Bar = 1 mm). (B) Schematic contraction peak showing parameters analysed, providing data on (C) spontaneous beat rate (n = 8).
Electrically paced engineered heart tissues produced average contraction peaks (D), quantified for (E) contraction force, (F) contraction time, and (G)
relaxation time (n = 4). (H) 2 Hz electrically paced AT1-engineered heart tissues with or without omecamtiv mecarbil treatment produced average
contraction peaks, quantified for (I) contraction force, (J) contraction time, and (K) relaxation time (n = 3). (L) Force-frequency relationship in MYH7-
mutant AT1-engineered heart tissues was assessed and quantified in (M). Fast spontaneous beat rate of homozygous R453C-b-myosin heavy chain
mutant meant only 2 Hz pacing was possible. (n = 4). Data, mean ± SD. P-values, one-way ANOVA testþDunnett’s correction.
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.isogenic sets and developed a high-content imaging algorithm (40 000
cells/line) to distinguish mono-, bi-, and multi-nucleation (Figure 3C, D;
Supplementary material online, Figure S4F–G). Strikingly, across all iso-
genic sets, WT/MUT showed a significant increase in bi- and multi-
nucleation (1.9–3.6% and 1.1–1.9%) relative to WT/WT, suggesting
an association with ratio of healthy: mutant bMHC proteins.

We explored sarcomeric structure, since myofibrillar disarray was
reported in HCM hiPSC-CM lines17 and associates with cardiomyo-
cyte dysfunction.37 To overcome commonly reported subjective
methods,38,39 we developed a novel high-content, machine learning
approach to identify morphology and texture of >_40 000 cells/line
(Figure 3E; Supplementary material online, Figure S4H, I). While disar-
rayed sarcomeres were detected in 14.0 ± 2.6% of WT/WT hPSC-

CMs, significant increases were observed in all mutant lines, with a
four-fold increase (to 56.4 ± 4.3%) in MYH7-KO (Figure 3F). Thus, dis-
ruption trended as a function of mutation load in R453C-bMHC
hPSC-CMs.

Since bMHC is known to interact with multiple proteins in, or
associated with, the sarcomere, we explored the impact of the
R453C mutation. Previously, elegant experiments using yeast-two-
hybrids showed that mutations in cMyBP-C abolished interaction
with bMHC S2 (tail) domains.40 However, in yeast, expression of full
length proteins of >1500 amino acids, such as bMHC is challenging.41

As an alternative, we used in silico modelling. Current structural hom-
ology models42–45 indicate the head domain (S1) of bMHC interacts
with: itself (via S1–S2); cMyBP-C; actin; ATP.

Figure 7 Transcriptomics analysis of hypertrophic cardiomyopathy lines. (A) MA plot of RNA-sequencing model developed showing differentially
expressed genes (766, false discovery rate < 0.1) between wild-type and diseased (MYH7-mutant) conditions, using cell line and culture format as
controlling factors (n = 3). (B) Genes identified were enriched for cardiomyopathy Online Mendelian Inheritance in Man (OMIM) disease. (C)
Volcano plots after refinement enabled distinction between diseased states by considering the genotype showed increasing number of differentially
expressed genes with mutation load (P < 0.05, red; log2 fold > 1 change, green). Fold± SD changes in the expression of genes involved in archetypal
hypertrophic cardiomyopathy pathways in the MYH7-mutant REBL-PAT-cardiomyocytes s relative to wild-type in (D) 2D cultures and (E) 3D-engi-
neered heart tissues. q-PCR analysis of MYH7/MYH6 expression ratios in gene-edited lines in 2D cultures normalized to wild-type in (F) AT1 and (G)
REBL-PAT lines (n = 4). Data, mean ± SD. P-values, one-way ANOVA testþDunnett’s correction.
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R453 is located between the HCM loop and Switch-2 of bMHC S1

and interacts with the proximal S2 region when folded back. The
change to cysteine is predicted to interfere with this S1–S2 bMHC
interaction, by disrupting the hydrogen bond established between
R453 and Q882 (Supplementary material online, Figure S5A–C). R453
is located close to the interface of cMyBP-C (Supplementary material
online, Figure S5D) and, in molecular dynamics simulations, can form
contacts with its C1 domain (Supplementary material online, Figure
S5E). Contrastingly, R453 is located away from the predicted inter-
face of S1 with actin (Supplementary material online, Figure S5F) and
ATP-binding region (Supplementary material online, Figure S5G), so
the mutation is not predicted to interfere directly with these interac-
tions.45 However, targeted molecular dynamics simulations have
shown R453C to cause changes in the flexibility of the loop between
the motor domain and the actin binding site.46

Mitochondrial respiration rates are
perturbed in bMHC mutant hPSC-CMs
Although controversial, one working hypothesis states that mutant
proteins within the sarcomere cause inefficient sarcomeric ATP util-
ization, energy depletion, increased oxygen consumption, and cardiac
dysfunction.47,48 To determine whether or not our model supported
this hypothesis, we analysed the isogenic hPSC-CMs with the
Seahorse platform (Figure 4A; Supplementary material online, Figure
S6A). This profiled oxygen consumption rates (OCR) during sequen-
tial addition of electron transport chain inhibitors, enabling calcula-
tion of basal and maximal respiration rates. The Seahorse also
measures ATP production in a manner that correlates to outputs
from other direct approaches, such as Luciferase ATP assay.49 There
was a positive association between these parameters and mutation
load, such that MYH7-KO and homozygoteþMYH6WT/fs had the
highest values followed in order by MUT/MUT, WT/MUT, and WT/
WT (Figure 4B–D; Supplementary material online, Figure S6B–D). This
was most striking in AT1-hiPSC-CMs, where basal respiration, max-
imal respiration and ATP production increased by �3-, 2.75-, and
�3-fold, respectively.

Surprisingly, these changes were not due to greater mitochondrial
content, since mitochondrial: nuclear DNA ratio50 showed little dif-
ference (Figure 4E; Supplementary material online, Figure S6E). This
was supported by flow cytometry using MitotrackerVR (Figure 4F, G;
Supplementary material online, Figure S6F, G), which reports on mito-
chondrial content and function.51 We speculated that similar mito-
chondria content in the mutant lines necessitated harder work to
meet the energy demands, hence lead to increased reactive oxygen
species (ROS) and cell stress. However, flow cytometry calculation
of total cell ROS or mitochondrial-specific ROS showed little inter-
line difference (Figure 4H–K; Supplementary material online, S6H–K).
Thus, the isogenic lines supported the energy depletion model but
did not suggest any dramatic increases in cell stress via ROS produc-
tion, at least under these test conditions.

bMHC mutant hPSC-CMs show altered
calcium handling
Calcium handling is central in excitation–contraction regulation,
hence development of HCM. We used nickase CRISPR/Cas9 to
knock-in a red genetically encoded calcium indicator (R-GECO1)

expression cassette into the safe AAVS1 locus of isogenic REBL-PAT-
hiPSC-CM trio (Figure 5A, B; Supplementary material online, Figure
S7A–D). Calcium imaging was analysed by confocal line scans (Figure
5C–F). Relative to WT/WT, there was an upward trend in beat rate
(50% in MUT/MUT), frequency of delayed after depolarization
(DAD)-like events interspersing the main peaks (>9-fold increase in
MUT/MUT) and signal amplitude/higher systolic calcium peak (WT/
MUT, �1.72-fold; MUT/MUT, �2.27-fold). Availability of cytosolic
calcium to trigger beating in diseased lines for longer was corrobo-
rated by treatment of cardiomyocytes with 1 lM nifedipine, an
L-type calcium channel blocker (Figure 5G, H).

These findings suggested that higher cytosol calcium concentra-
tions caused DAD-like arrhythmias in mutant hPSC-CMs. To explore
whether pharmacological rescue was possible, hPSC-CMs were
treated with 1 lM ranolazine, which acts as an enhancer of the out-
ward mode of sodium-calcium exchanger (NCX) by blocking late so-
dium currents, hence indirectly promotes Ca2þ efflux.52 This led to
reduced R-GECO1 signal amplitude and frequency of DAD-like
events in diseased lines, particularly WT/MUT (Figure 5I, J,
Supplementary material online, Figure S7E). Thus, altered calcium
handling and arrhythmogenesis were identified in R453C-bMHC
lines, and partial rescue could be achieved with ranolazine.

3D engineering unveils hypo-
contractility, negative clinotropy, and an
exacerbated negative force–frequency
relationship
Contraction is the fundamental purpose of the heart. Human engi-
neered heart tissues (hEHTs) directly measure contraction force by
partially recapitulating the 3D architecture of cardiac tissue by impos-
ing the auxotonic tension present in vivo.53,54 We produced hEHTs
from AT1 and REBL-PAT isogenics (Figure 6A, B), wherein cardio-
myocytes exhibited excellent alignment (Supplementary material on-
line, Figure S8A). Beat rate was fast in MUT/MUT and MYH7-KO
(Figure 6C). Analysis of force under 2 Hz pacing (Figure 6D–G;
Supplementary material online, Figure S8C–F), contraction time
(T180%), and relaxation time (T280%) produced trends similar to the
2D assays; mutation load associated with poorer functional output.
There was a predominance of hypocontractility and negative clino-
tropy (increased T180%), although little change in T280%. Contraction
in MYH7-KO was so compromised (�ten-fold lower force than WT/
WT), measurements were almost impossible (Figure 6D, E).

We attempted pharmacological rescue of reduced contraction
force and increased contraction time in hEHTs formed from mutant
hPSC-CMs. Omecamtiv mecarbil is a cardiac myosin activator that
acts by prolonging the actin–myosin interaction state, thereby
extending systolic ejection time and increasing cardiac contractility.55

AT1- and REBL-PAT-hEHTs treated with 1mM omecamtiv mecarbil
enhanced negative clinotropy but, unexpectedly, decreased contract-
ile force, apparently exacerbating impact of the 453-bMHC mutation
(Figure 6H–K; Supplementary material online, Figure S8G–J).

The inability of HCM-afflicted hearts to produce more force
during exercise-induced increases in beat rate contributes to sudden
cardiac death.56 We simulated this scenario in hEHTs. In AT1-hiPSC-
CM-EHTs, force declined as a function of pacing frequency in
WT/MUT and homozygousþMYH6WT/fs lines (Figure 6L, M).
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Measurement was not possible in AT1-MUT/MUT due to the high
spontaneous beat rate. Unlike AT1-EHTs, decline in force was not
seen during stepped pacing of hEHTs formed from REBL-PAT-
hiPSC-CMs (Supplementary material online, Figure S8K). This may be
due to their high baseline beat rates (�1.5 to 2 Hz) and/or low intrin-
sic force production (0.04–0.06 mN) (Supplementary material online,
Figure S8B), or may relate to the higher expression of the mutant al-
lele in AT1 vs. REBL-PAT heterozygotes (60% vs. 35%, respectively)
(Figure 1F).

RNA-seq highlights lncRNAs as potential
therapeutic candidates for HCM
To provide new insight into HCM, we used global transcriptome
analysis of isogenic hPSC-CM cultured as 2D monolayers (AT1,
REBL-PAT, HUES7) and hEHTs in 3D (AT1, REBL-PAT). Principal
component analysis (PCA) showed that hPSC culture format and cell
line origin were the main variance factors (Supplementary material
online, Figure S9A), reinforcing the importance of isogenic controls to
model disease.20 Analysis from all variants in 2D and 3D identified
290 differentially expressed genes [<10% false discovery rate (FDR)
Supplementary material online, Figure S9B, C]. Two layers of refine-
ment were applied: first, correction for cell line of origin and
culture format returned 766 genes (FDR < 0.1; Figure 7A). These
included loci associated with several cardiomyopathies (Figure 7B,
Supplementary material online, Figure S9D), but also previously un-
identified lncRNAs as top hits (2- to 8-fold change); Second, sub-
classifying genotypes within the diseased category into volcano plots
showed number of differentially expressed genes associated with
increasing mutation load (Figure 7C), following the trend of the
phenotypic assays.

Focused transcriptomics reveals core
pathways triggered by HCM
Focused analysis of 2D and 3D samples for AT1 and REBL-PAT iso-
genic sets via a �50 genes nanoString RNA chip (Figure 7D, E;
Supplementary material online, S9F–G) enabled querying of genes
involved in (i) foetal gene programme, (ii) hypertrophy, (iii) calcium
handling, (iv) apoptosis, (v) fibrosis, and (vi) autophagy. Data from 2D
hPSC-CMs identified increased expression of genes involved in the
Foetal programme (NPPA/B, validating BNP data), hypertrophic
responses (FHL1/2), apoptosis (CASP3), and fibrosis (FN1). While
changes were sustained in 3D (mainly fibrosis and hypertrophy), cer-
tain opposing trends were seen, corroborating conclusions from
RNAseq data on the importance of culture format. In 3D, decreases
in the genes involved in calcium handling machinery were found,
while changes in apoptosis and autophagy were less pronounced.

From the transcriptional data, we noted changes in expression of
MYH7 and MYH6. These were confirmed by qRT-PCR analysis,
showing�5- to 15-fold increases in the MYH7:MYH6 ratio in the dis-
eased lines across all three isogenic groups (Figure 7F, G;
Supplementary material online, Figure S9E). This is consistent with the
3.5-fold change in MYH7:MYH6 ratio caused by hypertrophy of
human hearts.57 These observations suggest a compensatory feed-
back loop, whereby sarcomere inefficiency downregulates the
‘energy hungry’ fast aMHC isoform in favour of the normally ‘energy-
efficient’ bMHC isoform. Altogether, transcriptomic analyses

highlighted foetal gene programme initiation, hypertrophic responses,
and aMHC to bMHC isoform switching as the main pathways trig-
gered in HCM.

Discussion

New investigative tools are needed for HCM. Few pharmacological
treatments exist, and the condition can necessitate surgery and/or
heart transplantation.58 Advancements are confounded by hetero-
geneity, wherein reproducibility of genotype–phenotype correlations
are challenging because human material is limited and frequency of
the same ‘natural’ mutations within families is low, compromising
statistical power.59 We overcame these issues by creating 11 isogenic
variants in three different hPSC lines centred on a c.C9123T-MYH7
(p.R453C-bMHC) substitution; until now, engineered homozygotes
have not been reported for human-based HCM. Our data demon-
strated unequivocally that a single R453C-bMHC mutation causes a
severe and penetrant pathophysiology independent of genetic
background.60

Our use of 12 different phenotyping approaches far exceeds previ-
ous studies,21 showing salient features of HCM were recreated in the
hPSC-CMs expressing the mutant bMHC. This validation is essential
since hPSC-CMs are often cited as being immature and hence not
representative of the adult cardiomyocyte or intact myocardium.
Our comprehensive approach, coupled with other evidence
that hPSC-CMs replicate morphology,53 contractility,53 electrophysi-
ology,61 signalling,62 and metabolism,63 gives confidence that the
outcomes we observed in vitro are also relevant for HCM in vivo.
hPSC-CM immaturity may even be advantageous by modelling early
disease stages, which is particularly relevant for R453-bMHC patients
who typically show an early onset of heart failure.60 This is when
treatment is most likely to be effective, hence will be useful for fur-
ther mechanistic dissection, development of diagnostics, and drug
testing. A next logical step will be further refinement by generating
complex tissues or organ-on-a-chip. This will require production of
other cells types found in the heart, such as cardiac fibroblasts, endo-
thelial cells, and smooth muscle cells, although robust protocols for
hPSC-based differentiation of these lineages are currently at various
stages of development.64,65

For many of the molecular assays and functional phenotyping, the
level of dysfunction associated well with mutation load but some-
times differed between the three hPSC lines, mirroring HCM com-
plexity.59 Closer inspection showed association with the ratio of
MUT:WT MYH7 allele expression. Heterozygote AT1 showed the
most severe phenotypes, and had a MUT:WT ratio of 60%, followed
by REBL-PAT (35%) and HUES7 (25%). This raises the intriguing pos-
sibility of whether this ratio could be a diagnostic predictor of sever-
ity of pathophysiology in patients.28,66

Isogenic sets will add clarity to the field. The impact of HCM on
mitochondrial respiration is controversial. Explants of human hyper-
trophied hearts showed �two-fold higher OCR,48 whereas skinned
muscle bundles obtained from myocardium of explanted human
hearts showed no difference relative to healthy controls.67 These
previous studies have been constrained by variability and scarceness
of the material, limitations overcome by isogenic hPSC-CMs Our
data on mitochondrial function/content, calcium handling and the
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..transcriptome support the energy depletion model of HCM, which
states disorganised sarcomere causes inefficient ATP usage and
imposes increased energetic demands on the cardiomyocyte.47 This
compromises the energy available to reduce cytosolic calcium levels
back to baseline, precipitating arrhythmogenesis. Interestingly, stress
cues, such as energy deficits, are known to trigger ploidy-activated
genes, promoting the a-MHC to b-MHC isoform switch, which leads
to enhanced production of ATP and allows the cardiomyocytes to be
more energy-efficient.57,68 Our observation of cell stress via energy
depletion, increased multi-nucleation (potentially leading to poly-
ploidy) and isoform switch supports this as an underlying mechanism
of R453C-bMHC mediated HCM.

The isogenic sets supported the notion that mitochondrial content
in failing hearts is not increased.69 We expected that increased de-
mand from the same number of mitochondria in cardiomyocytes with
inefficient sarcomeres would lead to increased ROS and cell stress, as
reported in mitochondrial cardiomyopathies.70 At least under base-
line spontaneous beating, this proved incorrect. High frequency pac-
ing (2–4 Hz) may unveil further phenotypes. While this is not possible
on the Seahorse platform, the advent of optogenetics-based methods
for pacing hPSC-CMs71 may provide a future route of enquiry.

Our data on contractility are compatible with literature investigat-
ing HCM in human cells and tissues, but contradict rodent studies. In
R453C-bMHC hPSC-CMs, we observed sarcomeric disarray and
hypo-contractility, despite increased metabolic demands. Force gen-
eration in R723G-bMHC human heart biopsies or E848-bMHC
hPSC-CM myofibrils was 30–66% lower.37,72 Tension was �35%
lower in several bMHC-mutant tissues,73,74 whereas tension-cost
was higher in R403Q-bMHC75 and R403W-bMHC76 variants.
Contrastingly, murine C2C12 myoblasts expressing recombinant
R453C-bMHC showed increased force generation and reduced
maximum ATPase activity.77 Rodent cardiomyocyte-derived EHTs
bearing missense mutations in sarcomeric genes (FHL2,78 ANKRD1,79

and MYBPC380,81) showed hypercontractile phenotypes.
These differences may underscore the delicate balance between

a-MHC and b-MHC expression, which is impacted on by species
differences and/or transgenic overexpression. Isoform switch from
b-MHC to a-MHC occurs in ventricles of mice during develop-
ment,82 but b-MHC is always predominant in human ventricles.83

Hypercontractile phenotypes associated with a-MHC mutations in
mice84,85 may cause opposing effects in the human predominant ven-
tricular counterpart (b-MHC). This may explain why the

Figure 8 Proposed hypertrophic cardiomyopathy mechanisms. Phenotypes investigated (red) in the developed model of hypertrophic cardiomy-
opathy of R453C-b-myosin heavy chain human pluripotent stem cell-cardiomyocytes; putative rescue drugs (purple). LTCC, L-type calcium channels;
NAC, N-acetyl-cysteine; NCX, sodium-calcium exchange pump.
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homozygousþMYH6fs/wt we describe showed a higher contractile
force than the homozygous line that lacks the off-target MYH6 event.
This is supported the observation that multi-nucleation, BNP expres-
sion and foetal gene programme initiation were not exhibited by
hPSC-CMs bearing the additional MYH6 mutation. Subtlety in levels

of a-MHC and b-MHC isoforms may also explain why only heterozy-
gous R453C-bMHC hPSC-CMs showed increased proportion of
multi-nucleated cells.

The isogenic sets of hPSC-CMs described here will be useful to
evaluate new therapies, building upon current strategies.86

Take home figure 1) The R453C-betaMHC pathological change was introduced in three independent healthy hPSC lines using CRISPR/Cas9.
2) The gene edited hPSC lines were differentiated to generate isogenic sets of hPSC-cardiomyocytes. 3) Phenotyping of hPSC-CMs in terms of a)
molecular, b) functional and c) transcriptomics analyses has validated the human HCM model generated, leading to new mechanistic and pharmaco-
logical understanding of the disease.
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Ranolazine reduced the number of DAD-like arrhythmias in hetero-
zygous R453C-bMHC cardiomyocytes, which is the genotype that
reflects most closely the clinical situation for patients. This suggests
that further evaluation of drugs that modulate calcium within this
model system will be warranted. Omecamtiv mecarbil caused nega-
tive clinotropy, consistent with the known mode of action of this
drug,55 but did not rescue the hypocontractility. We speculate this
may be due to disruption of sarcomeric interactions by the R453-
bMHC mutation, as predicted by in silico modelling (Supplementary
material online, Figure S5), high beat rates or to lack of t-tubules,
which could prevent drug-induced activation of myosin.

In summary, we generated a scalable human model of HCM by
using CRISPR/Cas9 to produce isogenic sets of C9123T-MYH7
(R453C-bMHC) mutants in hPSC-CMs. The utility of the model was
validated and now points towards routes for pharmacological rescue
and diagnostics. Identification of novel lncRNAs and putative gene
modifiers provide an avenue for new mechanistic and functional
understanding via knockout, overexpression and pathways analysis,
whereas suggesting new putative diagnostic biomarkers and targets
for therapy. This model (Figure 8) will pave the way in evaluating sin-
gle or combined drug- and/or gene-based therapeutics for HCM.

Supplementary material

Supplementary material is available at European Heart Journal online.
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